

ibm.com/redbooks

Deployment Guide Series: IBM
Tivoli Application Dependency
Discovery Manager V7.1

Vasfi Gucer
Vincent Abbosh

Sara C Brumfield
Martin Marino

David Ross
Ghufran Shah
Roger Turner

Learn about TADDM functions and
architecture

Get tips for installing and using
TADDM

Customize and tune
TADDM

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM Tivoli Application Dependency Discovery
Manager V7.1 Deployment Guide

August 2008

International Technical Support Organization

SG24-7616-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2008)

This edition applies to Version 7, Release 1, Modification 0 of IBM Tivoli Application Dependency
Discovery Manager (product number 5724-N55).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxi.

Contents

Figures . xi

Tables . xvii

Examples. xix

Notices . xxi
Trademarks . xxii

Preface . xxiii
The team that wrote this book . xxiii
Become a published author . xxv
Comments welcome. xxvi

Part 1. Tivoli Application Dependency Discovery Manager Introduction and Architectural
Overview . 1

Chapter 1. IBM Service Management overview . 3
1.1 Information Technology Infrastructure Library. 4

1.1.1 ITIL Version 3 . 4
1.1.2 Critical success factors to implement ITIL. 4

1.2 IBM and ITIL . 6
1.3 IBM Service Management . 6

1.3.1 Why businesses need ISM . 7
1.3.2 IBM Service Management overview . 8
1.3.3 IBM Service Management architecture . 10

1.4 TADDM and IBM Service Management . 11
1.4.1 Common data model. 11
1.4.2 Automatic discovery of components and relationships 12
1.4.3 Automatic topology creation . 12
1.4.4 Reconciliation . 12

1.5 Summary . 14

Chapter 2. Introduction to Tivoli Application Dependency Discovery
Manager . 15

2.1 TADDM overview . 16
2.1.1 IT problems addressed by TADDM. 16
2.1.2 TADDM capabilities. 17
2.1.3 Entities discovered by TADDM . 20

© Copyright IBM Corp. 2008. All rights reserved. iii

2.2 The TADDM discovery process. 22
2.2.1 Discovery requirements . 22
2.2.2 The discovery process . 23
2.2.3 Discovery sensors. 23
2.2.4 TADDM and secured environments . 24

2.3 TADDM features . 25
2.3.1 Auto-discovery . 25
2.3.2 Open API and SDK . 25
2.3.3 Deep configuration detail . 26
2.3.4 Discovery profiles . 26
2.3.5 Credential-less discovery . 26
2.3.6 Change tracking . 26
2.3.7 Secure interface . 27
2.3.8 Central viewing console for multifunctional teams 27
2.3.9 Analytics . 27
2.3.10 Versioning . 30
2.3.11 Summary of TADDM features . 31

2.4 Uses of TADDM . 31
2.4.1 Configuration management foundation . 32
2.4.2 Impact analysis visibility . 32
2.4.3 Change management support. 33

Chapter 3. Tivoli Application Dependency Discovery Manager architectural
design . 35

3.1 Introduction . 36
3.2 TADDM architecture overview. 38

3.2.1 TADDM architectural details . 40
3.2.2 Discovery extensibility . 44
3.2.3 TADDM APIs. 44
3.2.4 Discovery Library technology . 45

3.3 TADDM terminology . 46
3.3.1 TADDM Server (Domain Manager) . 46
3.3.2 TADDM user interface. 47
3.3.3 TADDM Database . 52
3.3.4 Anchor servers and Windows gateways . 52

3.4 eCMDB . 54
3.4.1 eCMDB overview . 54
3.4.2 eCMDB synchronization . 55
3.4.3 eCMDB database . 56
3.4.4 eCMDB security . 57

iv IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Part 2. Tivoli Application Dependency Discovery Manager Planning and Installation . . 59

Chapter 4. Deployment and capacity planning. 61
4.1 Sizing your TADDM environment . 62

4.1.1 TADDM Server sizing . 62
4.1.2 Topology reconciliation is not a linear process 62
4.1.3 Database sizing considerations . 63

4.2 Creating a deployment plan . 64
4.3 Planning your hardware and software. 65

4.3.1 Using Red Hat Enterprise Linux for your TADDM Server 72
4.3.2 Hardware requirements. 72

4.4 TADDM deployment checklist . 74
4.5 Planning worksheets . 76
4.6 Deployment planning case study . 80

4.6.1 Client scenario . 80
4.6.2 Solution approach . 81
4.6.3 Client solution . 85
4.6.4 Additional sizing examples . 87

Chapter 5. Tivoli Application Dependency Discovery Manager installation
steps. 89

5.1 Our lab environment . 90
5.2 Installing DB2 . 92

5.2.1 Install DB2 Enterprise Server . 92
5.2.2 Create DB2 database users . 106
5.2.3 Create the DB2 instances . 107
5.2.4 Run the make_db2_db.sh script . 107

5.3 Installing a TADDM Domain Server on Windows 108
5.3.1 Install TADDM 7.1 . 108
5.3.2 Install interim fix 0007 . 126

5.4 Installing a TADDM Domain Server on Linux . 126
5.4.1 Install TADDM 7.1 . 127
5.4.2 Install interim fix 0007 . 143

5.5 Installing a TADDM enterprise server on AIX . 144
5.5.1 Install TADDM 7.1 . 144
5.5.2 Install interim fix 0007 . 160
5.5.3 Configuring the eCMDB . 161

5.6 Configuring LDAP . 172
5.7 Deploying anchors and gateways . 174

5.7.1 Enabling discoveries across the firewall . 175
5.7.2 Defining an anchor host . 176
5.7.3 Open ports . 182

 Contents v

5.8 Setting up Windows gateways . 182
5.8.1 Installing Cygwin SSH. 183
5.8.2 Adding or changing a Windows gateway . 190

5.9 Troubleshooting. 193
5.9.1 Server not started automatically . 194
5.9.2 Installation log files . 195

Part 3. Discovery and Reporting Case Studies . 197

Chapter 6. Discovery scenarios . 199
6.1 Discovery sensors . 200

6.1.1 Discovery overview . 200
6.1.2 Discovery components . 200
6.1.3 Discovery process in detail . 202
6.1.4 Dependency discovery . 207
6.1.5 Understanding sensors . 208
6.1.6 Setting up discoveries . 209
6.1.7 Discovery profiles . 218
6.1.8 Level 2 profile . 226

6.2 Customizing and managing discoveries . 230
6.2.1 Custom servers . 231
6.2.2 Custom server extensions. 238
6.2.3 Computer system templates . 244
6.2.4 The bulkload program . 246

6.3 Reconciliation and prioritization. 250
6.3.1 Manually merging discovered configuration items 253
6.3.2 Adding prioritization rules to your configuration items. 258

6.4 Discovery Library Adapters . 263
6.4.1 Discovery Library Adapter concepts . 263
6.4.2 File naming conventions . 265
6.4.3 Integration overview . 266
6.4.4 Creating a Discovery Library Adapter . 266
6.4.5 When to use a Discovery Library Adapter. 269

6.5 Understanding the DLA APIs . 270
6.5.1 Using the DLA adapter API . 271
6.5.2 Managing configuration parameters and discoveries 272
6.5.3 Managing property change listeners . 273
6.5.4 Managing Discovery Library Adapter states 274
6.5.5 Using the DLA Book Production API. 275
6.5.6 Book properties and methods . 275
6.5.7 Managed element properties and methods. 278
6.5.8 Attribute properties and methods . 280
6.5.9 Relationship properties and methods . 281

vi IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.6 Example of Discovery Library Adapter . 282

Chapter 7. Reporting scenarios . 293
7.1 Introducing BIRT . 294
7.2 Deploying BIRT Report Viewer on TADDM. 294
7.3 Designing TADDM Reports with BIRT . 296

7.3.1 Designing reports with scripted data source 297
7.3.2 Designing reports with TADDM Database Views 317

7.4 Disaster recovery and validation . 334
7.4.1 Versions . 334

7.5 Root cause analysis with tracking changes. 338

Part 4. Performance and Troubleshooting Considerations. 341

Chapter 8. Performance considerations . 343
8.1 Performance improvements in TADDM V7.1 . 344
8.2 Discovery tuning . 344
8.3 Tuning storage performance . 350
8.4 Caching user interface views . 351

8.4.1 Understanding caching . 351
8.4.2 Configuring caching . 353
8.4.3 Maintaining the cache . 354

8.5 Database considerations. 355
8.5.1 Database indexes . 355
8.5.2 Database settings: DB2 . 356
8.5.3 Initial database statistics on DB2 . 357
8.5.4 Running statistics . 358
8.5.5 Bufferpool . 358

8.6 Java Virtual Machine settings . 361
8.6.1 Modifying the JVM arguments. 361
8.6.2 Java Max memory. 362
8.6.3 Java garbage collection . 363

8.7 Log settings for production . 363
8.8 Maintenance . 363

8.8.1 Clearing out unknown servers. 363
8.8.2 Finding and applying fixes and updates . 364

Chapter 9. Troubleshooting . 367
9.1 Log files . 368
9.2 Installation logs . 369
9.3 Problem determination tools . 369

9.3.1 testhang.jy. 370
9.3.2 testjdbc.jy . 372
9.3.3 testssh.py . 372

 Contents vii

9.3.4 testos.jy . 373
9.3.5 testping.jy . 375
9.3.6 testportmap.jy . 376
9.3.7 testportscan.jy . 377
9.3.8 testprimaryip.jy . 380
9.3.9 testsnmp.jy . 380
9.3.10 testwmi.jy . 381
9.3.11 wmiexec.jy. 381

9.4 Log and Trace Analyzer . 382
9.5 Specific scenarios . 386

9.5.1 Common problems . 386
9.5.2 Troubleshooting problems with sensors . 387
9.5.3 Storage errors in sensors . 389
9.5.4 Application programming interfaces (APIs) 390
9.5.5 Troubleshooting Windows discoveries . 391
9.5.6 Troubleshooting SSH . 400

Part 5. Planning for a Client Engagement. 403

Appendix A. Planning for a client engagement . 405
Services engagement preparation . 406

Implementation skills . 406
Available resources. 407

Solution scope and components . 407
Basic solution definition. 409
Advanced solution definition . 410

Services engagement overview . 410
Executive Assessment . 411
Demonstration system setup. 412
Analyze solution tasks. 413
Creating a contract . 415

Estimating the activities and timings of the engagement 417
Perform environmental analysis and plan tasks . 417
Plan the solution . 419
Implement the solution . 420
Close the engagement . 421

Appendix B. Sample Statement of Work for Tivoli Application Dependency
Discovery Manager . 423

Building an auto-discovery and device dependency solution. 424
Executive summary. 424
Solution description. 425
Assumptions . 426
Business partner responsibilities. 426

viii IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Client responsibilities . 427
Staffing estimates . 427
Testing . 427
Deliverables . 428
Completion criteria . 428

Abbreviations and acronyms . 429

Related publications . 431
IBM Redbooks publications . 431
Online resources . 431
How to get IBM Redbooks publications . 432
Help from IBM . 432

Index . 435

 Contents ix

x IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figures

1-1 Infrastructure complexity . 7
1-2 IBM Service Management. 10
2-1 Discover transactional relationships between the components and the

applications. 18
2-2 A comparison that shows differences across configuration items. 30
3-1 TADDM architecture . 38
3-2 TADDM data model. 42
3-3 Adding extended attributes in TADDM . 43
3-4 Multiple Domain Servers . 47
3-5 TADDM Java Product Console . 48
3-6 TADDM Domain Manager UI . 51
3-7 TADDM deployment using eCMDB. 54
5-1 Lab environment . 91
5-2 DB2 Installation Welcome panel . 93
5-3 Install a Product panel. 94
5-4 Welcome to the DB2 Setup wizard panel . 95
5-5 Software License Agreement . 96
5-6 Select the Installation type panel . 97
5-7 Select installation, response file creation, or both panel 98
5-8 Select the installation directory panel . 99
5-9 Set user information for the DB2 Administrator Server 100
5-10 Set up a DB2 instance panel. 101
5-11 Set up notifications panel . 102
5-12 Start copying files panel . 103
5-13 Installation progress panel . 104
5-14 Setup has completed successfully panel . 105
5-15 Install DB2 fix pack panel . 106
5-16 The setupWin32.exe command . 108
5-17 InstallShield Welcome panel . 109
5-18 License Agreement . 110
5-19 Installation directory . 111
5-20 Defining a TADDM user . 112
5-21 Choose the installation type . 113
5-22 Select the server type . 114
5-23 TADDM Server port information . 115
5-24 Additional server ports when running in an enterprise environment . . . 116
5-25 Specifying Remote Method invocation (RMI) information 117
5-26 Optional CCMDB host name and port. 118

© Copyright IBM Corp. 2008. All rights reserved. xi

5-27 Select the database type. 119
5-28 Database configuration information . 120
5-29 Select the user registry option. 121
5-30 Summary information . 122
5-31 Installation completion. 123
5-32 The control status command and output. 124
5-33 Tivoli Application Dependency Discovery Manager page 125
5-34 Product Console . 126
5-35 InstallShield Wizard Welcome panel. 127
5-36 License Agreement . 128
5-37 Installation directory . 129
5-38 Defining a TADDM user . 130
5-39 Choose the installation type . 131
5-40 Select the server type . 132
5-41 TADDM Server port information . 133
5-42 Additional server ports when running in an enterprise environment . . . 134
5-43 Specifying RMI information . 135
5-44 Optional CCMDB host name and port. 136
5-45 Select the database type. 137
5-46 Database configuration information . 138
5-47 Select the user registry . 139
5-48 Summary information . 140
5-49 The control status command and output. 141
5-50 Tivoli Application Dependency Discovery Manager page 142
5-51 Product Console . 143
5-52 InstallShield Wizard Welcome panel. 145
5-53 License Agreement . 146
5-54 Installation directory . 147
5-55 Defining a TADDM user . 148
5-56 Choose the installation type . 149
5-57 Select the server type . 150
5-58 TADDM Server port information . 151
5-59 Specifying RMI information . 152
5-60 Optional CCMDB host name and port. 153
5-61 Select database type. 154
5-62 Database configuration information . 155
5-63 Select user registry . 156
5-64 Summary information . 157
5-65 The control status command and output. 158
5-66 TADDM . 159
5-67 Domain Manager. 160
5-68 eCMDB . 161
5-69 Domain summary . 162

xii IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

5-70 Add Domains. 163
5-71 Add Waco domain. 164
5-72 Waco domain added . 165
5-73 Add Southend domain. 166
5-74 Waco and Southend domains added . 167
5-75 Synchronize Domain: Waco . 168
5-76 Waco full synchronization complete . 169
5-77 Schedule daily synchronization for Waco . 170
5-78 Waco daily synchronization scheduled . 171
5-79 Domain summary showing scheduled synchronizations. 172
5-80 Adding a new Discovery Scope Set . 178
5-81 Adding a new target . 179
5-82 Entering Access List credentials for Zaire. 179
5-83 Entering scope limitations for anchor . 180
5-84 Starting a new discovery . 181
5-85 Cygwin NetRelease Setup Program . 184
5-86 Choose A Download Source . 185
5-87 Choose Installation Directory . 186
5-88 Select Local Package Directory . 187
5-89 Select Packages . 188
5-90 Installation Status and Create Icons . 189
5-91 ssh-host-config utility. 190
5-92 Adding a gateway and setting the scope . 191
5-93 Running discovery of new Windows gateway . 193
6-1 Discovery components . 201
6-2 Discovery workflow process . 203
6-3 Basic discovery sensor sequence. 204
6-4 OS and application discovery . 206
6-5 Viewing the loaded scope using the GUI . 213
6-6 Viewing the loaded scope using the CLI . 214
6-7 Configuring sudo access. 220
6-8 Creating a new discovery profile . 223
6-9 Deselecting SnmpLightSensor . 224
6-10 Executing StackStan discovery. 225
6-11 Checking the discovery status . 226
6-12 Access Lists . 229
6-13 Selecting scopes for Level 2 discovery . 230
6-14 Identifying unknown server patterns . 233
6-15 Creating a custom server . 235
6-16 Selecting config files . 236
6-17 Sendmail custom server discovered . 237
6-18 Checking updated product version . 241
6-19 Checking updated product version using TADDM Product Console. . . 242

 Figures xiii

6-20 New Config File added . 243
6-21 Using TADDM console to check the newly imported CIs 257
6-22 Merging ServerA and ServerB . 257
6-23 ServerB after manual merge . 258
6-24 Attribute Prioritization window . 260
6-25 MSS source LinuxComputerSystem.xls . 282
6-26 Viewing loaded Linux computer systems from the IDML Book 292
6-27 Viewing loaded Linux computer system detail from the IDML Book . . . 292
7-1 Introduction panel for BIRT Report Viewer . 295
7-2 A test report after it was rendered as HTML . 296
7-3 Creating new Report Project . 298
7-4 Adding the project name . 299
7-5 Creating a new report . 300
7-6 New report wizard . 301
7-7 New data set for a scripted data source . 302
7-8 Column definitions. 303
7-9 Script window for ComputerSystems data set showing available methods .

303
7-10 Scripted data source sequence diagram. 304
7-11 Adding Javascript code to the data source . 309
7-12 Scripted data set results preview . 310
7-13 Edit Text Item dialog with the changes added 311
7-14 New Chart dialog with the Pie type chart selected 312
7-15 Preview of the chart after the data set is bound to it 313
7-16 Formatting the chart . 314
7-17 The final report layout . 315
7-18 TADDM Computer Systems report using BIRT. 316
7-19 New JDBC data source. 318
7-20 JDBC connection details for CMDB on DB2 . 319
7-21 Adding DB2 JDBC JAR files to BIRT-managed drivers 320
7-22 JDBC connection details for Microsoft Excel sheet. 321
7-23 Software_inventory.xls sample content. 321
7-24 Setting up the software component query. 322
7-25 Query definition of Excel data set . 323
7-26 Preview results of the Software_Lic data set . 324
7-27 Insert Table dialog. 324
7-28 Add grouping feature to the table . 325
7-29 The final design of taddm_software_audit.rptdesign. 326
7-30 The final design of excel_software_inventory.rptdesign 327
7-31 Choosing the Hyperlink option . 328
7-32 The Hyperlink Options choices . 329
7-33 excel_software_audit table filter options . 330
7-34 The Highlight options for excel_software_inventory row. 331

xiv IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

7-35 TADDM Software Components Report . 332
7-36 Software Inventory report with a highlighted item 333
7-37 Software Inventory report with no highlighted item 333
7-38 Version view . 335
7-39 Selecting the Comparison report from the Topology View 336
7-40 Selecting the versions for the comparison report 336
7-41 DB2 Comparison report example . 337
7-42 Apache Server Comparison report example . 337
7-43 Apache Comparison report details . 338
7-44 Change History settings . 339
7-45 Change History report for Order Management business application . . 339
8-1 Discovery status . 345
8-2 Discovery in progress . 346
8-3 Discovery done . 347
8-4 In progress status . 348
8-5 Script to create the buffer.out file . 359
8-6 Sample buffer.out file . 360
9-1 Components of a log message . 388
9-2 WMI Tester . 393
9-3 Namespace . 394
9-4 WMI Tester . 394
9-5 Connect. 396
9-6 WMI Tester . 396
9-7 WMI Tester . 397
9-8 TADDM message . 401
9-9 Error message. 401
9-10 RSA key added . 401
9-11 Portfolio of products . 408

 Figures xv

xvi IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Tables

1-1 ComputerSystem naming rules. 13
2-1 Entities discovered by TADDM . 21
3-1 TADDM Java Product Console uses. 49
4-1 Supported operating systems for TADDM V7.1 components 65
4-2 TADDM deployment checklist . 74
4-3 Setting for a typical installation . 77
4-4 Additional settings for a custom installation . 77
4-5 Additional port values . 78
4-6 Settings for Oracle database. 79
4-7 Ports used by the PingSensor and PortSensor to make connections. . . . 79
4-8 Client ABC IT Infrastructure . 81
4-9 Sample data showing the number of CIs for an Item 82
4-10 Additional CIs for each database or application server instance 83
4-11 Performance benchmark using various discovery techniques 84
5-1 DB2 database users . 107
6-1 Discovery scope information . 210
6-2 Access details by components . 217
6-3 Discovery profiles by default in TADDM . 218
6-4 Custom server information . 232
6-5 Directive file format . 239
6-6 Reference for the loadidml.sd command . 248
6-7 Configuration parameters and discovery methods 272
6-8 Property change listener methods . 274
6-9 State methods . 274
6-10 Book production properties . 276
6-11 Book production methods . 276
6-12 Managed element properties . 279
6-13 Managed element methods. 279
6-14 Attribute properties . 280
6-15 Attribute methods . 280
6-16 Relationship properties . 281
6-17 Relationship methods . 281
8-1 Improvements over TADDM 5.1.3. 344
9-1 Ports and related protocol . 377
A-1 Solution tasks . 412
A-2 Solution demonstration tasks . 413
A-3 Skill adjustment. 415
A-4 Estimated time in hours for identified tasks . 417

© Copyright IBM Corp. 2008. All rights reserved. xvii

A-5 Timeline estimates for implementation activities 421

xviii IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

 Examples

4-1 SmallManufacturer Inc . 87
4-2 MediumInsurer Inc . 88
4-3 LargeInsurer Inc . 88
5-1 Obtaining sslpassphrase and unicastdiscoveryport values. 164
5-2 Adding the relative distinguished name administrator. 173
6-1 Sensor logging . 209
6-2 Using the loadscope.jy command . 212
6-3 Executing Nmap after install . 221
6-4 Preparing csv files to import Level 2 Scopes . 227
6-5 Listing scope files to import. 227
6-6 Importing the new scopes . 228
6-7 Querying sendmail version . 239
6-8 Directive file for Sendmail custom server . 240
6-9 Querying updated Sendmail version . 240
6-10 Editing the screencontent.xml file . 241
6-11 Adding the command to create a configuration file 242
6-12 AixUnitaryComputerSystem ServerA . 254
6-13 AixUnitaryComputerSystem ServerB . 255
6-14 ExcelConnection.java . 283
6-15 ExcelConnection.java . 287
6-16 LinuxComputerSystem.xml . 287
6-17 Validating the IDML Book . 290
6-18 Loading the IDML Book. 291
7-1 CMDBDriver.java class . 304
7-2 Compiling CMDBDriver.java class using the Windows command line . . 308
7-3 Sample report title in HTML . 311
7-4 Sample title text box content for excel_software_inventory report 331
8-1 Performance degradation . 349
8-2 Directories . 352
8-3 Base recommended view cache settings . 353
8-4 The upd_db_cfg.sql script . 356
8-5 Javacore . 362
9-1 Using testhang.jy. 371
9-2 Using testjdbc.jy to connect to tiodb . 372
9-3 Using testos.jy. 373
9-4 Using testportmap.jy . 376
9-5 Using testportscan.jy. 378
9-6 testportscan.jy . 379

© Copyright IBM Corp. 2008. All rights reserved. xix

9-7 Using testprimaryip.jy . 380
9-8 Using testsnmp.jy . 380
9-9 Using testwmi.jy . 381
9-10 Using wmiexec.jy . 382
9-11 Finding a MQL query in the ApiServer.log . 390
9-12 The ERROR message in ApiServer.log . 391
9-13 TaddmTool command . 398

xx IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. xxi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DB2®
i5/OS®
IBM®
Intelligent Device Discovery®

Micromuse®
Netcool®
PartnerWorld®
Redbooks®
Redbooks (logo) ®

RS/6000®
System z®
Tivoli Enterprise Console®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency
which is now part of the Office of Government Commerce.

SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States and
other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xxii IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

In this IBM® Redbooks® publication, we describe the capabilities and ways to
use the IBM Tivoli® Application Dependency Discovery Manager (TADDM). It is
becoming critical for enterprises to track the IT resources in their environment
and, more importantly, the dependencies of their business applications on
various components. TADDM provides rich capabilities that discover the
components of a complex infrastructure and their interdependencies.

In this book, we provide insight into the TADDM V7.1 capabilities and
architecture. We include recommended procedures for installing and configuring
TADDM and tips and techniques for populating the TADDM Database and
customizing its use and performance considerations.

Finally, we describe the sales engagement planning for TADDM V7.1, including
a sample statement of work. The primary audience for this section is Business
Partners and pre-sales Systems Engineers working in this area.

This book is a major reference for IT Specialists and IT Architects working in
TADDM V7.1 projects.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Vasfi Gucer is an IBM Certified Consultant IT Specialist at the ITSO Austin
Center. He was with IBM Turkey for 10 years and has worked at the ITSO since
January 1999. He has more than 13 years of experience in teaching and
implementing systems management, networking hardware, and distributed
platform software. He has worked on various Tivoli client projects as a Systems
Architect and Consultant. Vasfi is also a Certified Tivoli Consultant.

Vincent Abbosh is an Advisory Software Engineer in IBM Tivoli Advanced
Technology Group, working at IBM Australia Development Lab on the Gold
Coast. He graduated in 1992 from Aleppo University - Syria with BEng degree in
Computer Engineering. He has over 15 years of experience in IT and software
development in the areas of security and service management. He joined IBM
Tivoli Gold Coast Lab in 2003 as software engineer where he worked on
developing Global Security Kit (GSkit), IBM JDK Security, Federated Identity
Management, and Common Auditing and Reporting Service. His current focus is

© Copyright IBM Corp. 2008. All rights reserved. xxiii

on developing Information Technology Infrastructure Library (ITIL®)-based
Service Management solutions.

Sara C Brumfield is a Software Engineer at IBM, currently working in the Tivoli
Support Center. Her career has included many diverse projects, including
developing system management tools for AIX®, starting the hosted services
group for a startup, and recruiting development tools vendors for the RS/6000®
server platform. Sara holds a Bachelors degree from Rice University, with majors
in Computer Science and the Study of Women and Gender.

Martin Marino is an IT Specialist within the IBM Global Technology Services
group in IBM Argentina. He has specialized in Tivoli products since 2003. He is
currently working with TADDM for Strategic Outsourcing clients in Argentina and
Latin America. His areas of expertise include Tivoli Monitoring, Tivoli
Configuration Manager, Tivoli Remote Control, and Tivoli Management
Framework.

David Ross is a Technical Course Developer with IBM Tivoli in the United
States. A former classroom instructor and network administrator, he has been
with IBM for over eight years. He holds a degree in Secondary Education with a
Mathematics minor from Texas A&M University and another in Computer Science
from the University of Texas Permian Basin. He has developed both classroom
and Web-based training materials on products involving security, network
management, service desk support, and system automation. He has spent the
past two years focused on the Information Technology Service Management
(ITSM) products, particularly TADDM and CCMDB. In addition to course
development, he has taught Tivoli courses and delivered lectures in classrooms
and conferences around the world.

Ghufran Shah is a IBM Certified Advanced Deployment Professional in
Enterprise, Provisioning, and Business Application Management Solutions. He
has ten years of experience in Systems Development and Enterprise Systems
Management. He holds a degree in Computer Science from the University of
Bradford. His areas of expertise include Tivoli Systems Management
Architecture, Implementation, and Tivoli Training, together with Business Process
Improvement. He has written extensively about event Management, Monitoring,
and Business Systems Management integration and has taught IBM Tivoli
courses worldwide.

Roger Turner is a Senior Managing Consultant with the IBM Software Services
for Tivoli (ISST) organization. He has been with for IBM for 28 years, the past 12
years as a consultant with the ISST organization. As an ISST consultant, he has
been working with clients to implement business system and service
management products, including Global Enterprise Manager, Tivoli Business
Systems Manager (TBSM) 2.1 and 3.1, and Tivoli Business Service Manager
4.1. He has worked with clients in many focus areas, including banking,

xxiv IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

insurance, government, financial services, retail, and health. For the past 2 1/2
years, he has also been working with clients to implement the Tivoli Application
Dependency Discovery Manager (TADDM) product. His area of expertise
includes the integration of TBSM and TADDM. He holds numerous certifications,
including ITIL Service Management - Service Support and Service Delivery,
TBSM 3.1 distributed and TBSM 3.1 mainframe, and TADDM 7.1.

Thanks to the following people for their contributions to this project:

Arzu Gucer
International Technical Support Organization, Austin Center

Ed Bernal, Byron Gehman, and Mike Mallo
IBM USA

The team would like to express special thanks to Jan Erik Hoel from IBM Norway
for his contributions to Chapter 8, “Performance considerations” on page 343 and
Chapter 9, “Troubleshooting” on page 367.

Thanks to the authors of the previous editions of this book:

� Authors of IBM Tivoli Application Dependency Discovery Manager
Capabilities and Best Practices, SG24-7519, which was published in
February 2008, were:

– Bart Jacob
– Bhavesh Adhia
– Karim Badr
– Qing Chun Huang
– Carol S. Lawrence
– Martin Marino
– Petra Unglaub-Lloyd

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

 Preface xxv

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publications form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xxvi IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Tivoli Application
Dependency
Discovery Manager
Introduction and
Architectural
Overview

In this part, we introduce IBM Service Management portfolio and Tivoli
Application Dependency Discovery Manager (TADDM).

Part 1

© Copyright IBM Corp. 2008. All rights reserved. 1

2 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 1. IBM Service Management
overview

In the fall of 2007, the IBM Systems Journal provided a series of papers focused
on the IBM Service Management strategy and related technologies and
solutions. This IBM Systems Journal is available at:

http://www.research.ibm.com/journal/sj46-3.html

We extracted and paraphrased information from the papers presented in this
IBM Systems Journal to create part of the content in this chapter.

In this chapter, we discuss the IBM Service Management initiative. We also
describe the role that IBM Tivoli Application Dependency Discovery Manager
(TADDM) can play in implementing a comprehensive solution to address the
needs of current IT organizations.

In this chapter, we discuss:

� “Information Technology Infrastructure Library” on page 4
� “IBM and ITIL” on page 6
� “IBM Service Management” on page 6
� “TADDM and IBM Service Management” on page 11
� “Summary” on page 14

1

© Copyright IBM Corp. 2008. All rights reserved. 3

http://www.research.ibm.com/journal/sj46-3.html

1.1 Information Technology Infrastructure Library

Information Technology Infrastructure Library (ITIL) is an internationally
recognized framework that provides comprehensive best practice guidelines for
all aspects of end-to-end Service Management. ITIL includes people, processes,
products, and the use of partners. It began in the 1980s when the UK
Government initiated an exercise to standardize its diverse IT processes.

ITIL has evolved over the years to cover Service Support and Service Delivery,
and in 2007, Version 3 was launched, which includes a life cycle management
approach in five core volumes: Service Strategy, Service Design, Service
Transition, Service Operation, and Continual Service Improvement.

The best practices contained in ITIL are independent of tool, vendor, or industry
and can be applied to an organization of any size. ITIL encourages organizations
to adapt and adopt its suggestions to meet business needs and improve
processes. Though there is a significant amount of detail in the books that make
up the library, the books are not themselves the solution to all IT management
issues. The processes require significant work to deploy at a level of detail
enabling day-to-day use, with dependencies on the three key components
(process, people, and tools) of a management system.

Even though there are many references to ITIL as a standard, it is not a
standard. Organizations cannot comply with ITIL. It is a set of guidelines that an
organization can adopt and adapt to their needs.

1.1.1 ITIL Version 3

ITIL Version 3 focuses on best practices throughout the service life cycle. It
focuses essentially on service and solution life cycle management, including five
core volumes: Service Strategy, Service Design, Service Transition, Service
Operation, and Continual Service Improvement. Further discussion of ITIL
Version 3 is outside the scope of this book.

1.1.2 Critical success factors to implement ITIL

Because ITIL is a framework of best practices and not a methodology, it only
describes what needs to be done. ITIL does not provide guidance for how to
implement the processes, so each company chooses the best way to fit ITIL to its
requirements.

4 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

A key mind-set when implementing ITIL is “adopt and adapt“. “Adopt” ITIL as a
common language and reference point for IT Service Management, and “adapt”
ITIL best practices to achieve business objectives.

Generally, IT organizations do not implement all of the ITIL processes, because
they do not have sufficient budget, and they determine that they do not need all
of the processes. Initially, implementing a subset of all processes can be seen as
a way to avoid extra costs. However, depending on the processes that you
choose to implement, excluding other processes might result in less benefit from
those processes that you implement. For example, choosing to implement
Change and Release processes without implementing Configuration might result
in an inaccurate impact assessment when approving changes.

You must carefully select the service management processes, taking into
consideration the relationship among all processes in addition to the cost
perspective and implementation complexity of individual processes.

A successful implementation of IT Service Management must:

� Be aligned with business needs - business-driven not technology-driven

� Improve staff awareness about business goals

� Be adapted to the culture of the organization. This adaptation must be done
when defining the roles, responsibilities, tools, processes, procedures, tasks,
and so on. After IBM Service Management is implemented, it must be
rigorously followed.

� Have its processes clearly defined, documented, and available

� Have its main processes integrated with each other

� Have its inputs measurable and repeatable

� Have IT processes supported by tools and customized to fit the processes
defined

� Have processes easily changed as necessary

� Be integrated with external suppliers

� Include properly training and communicating to all people who will use or
provide IT services

� Have clearly measurable and repeatable key performance indicators

A successful IBM Service Management implementation needs to result in
improved IT client satisfaction, better resource utilization, and improved client
perception of IT service quality.

 Chapter 1. IBM Service Management overview 5

1.2 IBM and ITIL

IBM initially contributed to ITIL with its systems management concept “yellow
books” and continues to contribute as a developer, reviewer, and user of ITIL.

IBM contributed in many ways to ITIL Version 2, including authoring, quality
reviews, project management, and additional support through the IT Service
Management Forum. The focus of Version 2 was on process management
practices required to enable service management. The ITIL service support and
delivery publications contain significant contributions from IBM. The ITIL
application management book, co-written by authors from IBM and other
companies, is the basis for the life cycle concept in ITIL Version 3. It lays the
basic groundwork for how to integrate service management practices throughout
the solution life cycle.

IBM supports the development of updates and refreshes to industry-accepted
best practices, including supporting the ITIL Advisory Group through quality
reviews and other briefings. Thought leaders also serve on the ITIL Advisory
Group and other working groups to contribute as the need arises. IBM views ITIL
as a valuable set of publications that promote best practices in service
management. From a strategic outsourcing perspective, ITIL is requested by
many IBM clients all around the globe. Companies that are implementing
improvements to their service management capabilities consider ITIL a good
place to start.

1.3 IBM Service Management

IBM has developed thought leadership to improve the “state of the art” in service
management for the last 25 years and has supported other companies in their
efforts as well. In addition to the advancement of management disciplines and
technologies, IBM recognized early on that acceptance of common practices and
standards is vital to achieving improved value from information technology (IT).

Advances in technologies and management disciplines provide the greatest
value when they become part of and extend the body of generally accepted
practices and open standards. IBM supports the advancement of practices and
open standards, such as ITIL (the IT Infrastructure Library®), COBIT (Control
Objectives for Information Technology), ISO IEC 20000, and Carnegie Mellon
University’s e-Sourcing Capability Model (e-SCM). The fundamental
characteristics of service management require integration and agreement on
standards, not only between tools and roles within IT, but also among
organizations and even industries.

6 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

IT service management is the integrated set of activities required to ensure the
cost and quality of IT services valued by the client. It is the management of
client-valued IT capabilities through effective processes, organization,
information, and technology, including:

� Aligning IT with business objectives

� Managing IT services and solutions throughout their life cycles

� Service management processes, such as those processes described in ISO
IEC 20000, ITIL, and the Process Reference Model for IT.

1.3.1 Why businesses need ISM

Today’s enterprises face an ever-increasing problem of managing their IT
processes to deliver IT services in a manner that is:

� Efficient
� Reliable
� Secure
� Consistent

At the same time, the complexity of the infrastructure needed to deliver these
IT-enabled business services has been increasing rapidly. Figure 1-1 shows a
simple example of the complexity of IT environments.

Figure 1-1 Infrastructure complexity

 Chapter 1. IBM Service Management overview 7

Several of the key challenges faced by businesses include:

� Complexity: The root cause of the problems that IT organizations face lies in
the dramatic increase of business complexity due to heterogeneity of
environments and the interconnection of applications (composite
applications). Architectural and organizational issues, accelerating the
proliferation of composite applications and hardware entities, and worldwide
operations spanning multiple time zones all contribute to reducing the
efficiency and effectiveness of the IT organization.

� Change: Complexity makes for hard-to-manage infrastructures that often
break when changed and whose management requires a discipline that few
companies achieve without flaws. Increasing workloads, more stringent
service-level assurance requirements, staff turnover, and new market
opportunities all lead to pressure for change in the IT organization. Change is
the leading cause of service or application disruption today, and it often
results in visible business impact. In fact, our experience suggests that nearly
80 percent of all critical outages can be traced to faulty change management.

� Cost: Currently, operational IT labor cost constitutes almost 70 percent of the
total IT budget of businesses. In the late 1990s, half of the IT labor budget
was devoted to new application development, and half of the IT labor budget
was devoted to operations. Because IT budgets have been held flat, the chief
information officers of IT organizations have faced two unappealing choices:
shift resources from new application development or reduce the level of
support for current applications. Both options serve to reduce the efficiency
and effectiveness of IT.

� Governance and compliance: The introduction of government regulations,
such as the Sarbanes-Oxley Act (SOX) and the Health Insurance Portability
and Accountability Act (HIPAA) in the United States, have put an additional
burden on the IT organization. IT must now support the needs of the business
to audit for compliance through the institution of better process controls and
the maintenance of audit trails for IT infrastructure changes. This support
requires careful consideration because of the penalties of noncompliance,
including criminal and civil liabilities and adverse public opinion.

1.3.2 IBM Service Management overview

For many businesses, service excellence is increasingly a competitive
differentiator, because organizations need to rapidly adapt to changing
conditions in the marketplace and create and deploy new services quickly and
efficiently. However, service excellence can only be achieved through effective
and efficient service management.

A fundamental goal of IT Service Management is the management of IT services
and infrastructure with the same kinds of quality control that enterprises strive to

8 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

use for all business processes. When this management is achieved, businesses
have the confidence to deploy new and updated services that are critical to their
missions.

An effective IT Service Management capability reduces the time needed to
deliver a company’s IT services according to business policies and reduces the
labor cost of the people involved in executing the processes by replacing manual
IT process management with autonomic management.

IBM Service Management is an approach designed to automate and simplify the
management of business services. It concentrates on four areas of study:

� Technology integration and standards

� Improved collaboration among IT personnel spread across organizational
silos

� Best practices-based process modules to enable automated process
execution

� Sharing business critical IT information to improve decision making

In finding workable solutions to these areas, IBM solutions cover four key areas:

� Process Managers that provide automated ITIL-aligned workflows for key IT
processes

� An open, standards-based IBM IT Service Management platform

� Integration between process tasks and operational management products to
automate the running of those tasks from the process flow

� Best practices to help pull it all together

These four key areas are pictured in Figure 1-2 on page 10.

 Chapter 1. IBM Service Management overview 9

Figure 1-2 IBM Service Management

1.3.3 IBM Service Management architecture

The IBM Service Management architecture is illustrated in Figure 1-2. Note
several of the major components:

� A user interface that provides access to IT personnel across multiple
disciplines and areas of concern

� A process layer to coordinate workflows and process management across the
ITIL catalog (service delivery and support, change management, storage
management, and so on)

� An operational management component shown by the operational
management products (OMPs) and the integration modules

� A central information component represented as the Configuration
Management Database (CMDB) and the supporting functions

TADDM is a crucial element in the CMDB component. If used with IBM Service
Management software, such as the IBM Tivoli Change and Configuration
Management Database (CCMDB), TADDM is the primary means of populating
the CMDB through discovery.

IBM Service Management

Best Practices and Services

Operational Management

Service Management
Platform

Process Management

IBM Service Management

Best Practices and Services

Operational Management

Service Management
Platform

Process Management

10 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

The CMDB also has requirements, which are addressed by TADDM. Part of the
functionality that must be offered or supported by the CMDB includes:

� Common data model for the entire IT environment (including relationship
information):

– Physical components (computers, devices, and so on)

– Logical components (business services, applications, and so on)

� Automatic discovery and change tracking

� Reconciliation capabilities in order to effectively integrate from multiple
sources of data

� Visual display of relationships and dependencies

1.4 TADDM and IBM Service Management

In this section, we discuss the role that TADDM plays in IBM Service
Management in meeting the CMDB requirements that were outlined in the
previous section.

1.4.1 Common data model

The common data model (CDM) that is used by TADDM defines the following
constructs:

� Models: Models consist of attributes, classes, and relationships.

� Classes: Classes represent IT entities and can participate in relationships. An
example is ComputerSystem.

� Attributes: Attributes are defined separately from classes and can be reused
in any number of class definitions. An example is GUID, the globally-unique
identifier.

� Relationships: Relationships are strongly typed entities apart from classes.
All relationships are binary (having only two objects defined in the
relationship). An example is runsOn, where one entity, such as Aix (the
operating system), actually is executing and requires the execution
environment provided by another component (ComputerSystem). The
relationship can be described as Aix runsOn ComputerSystem.

� Data types: Data types are similar to the data types in programming
languages. An example is String as in the attribute Description is of type
String.

 Chapter 1. IBM Service Management overview 11

The CDM currently has about 1 000 classes, subclasses, and relationships
defined.

1.4.2 Automatic discovery of components and relationships

There are many reasons to need to discover IT assets, including deployment,
license compliance, and more. There are also many products on the market that
are able to discover this information either directly or through the use of agent
technology. TADDM is unique in its ability to discover not only the hardware,
software, and related information in the IT environment, but also the relationships
that exist between these entities.

1.4.3 Automatic topology creation

As part of the discovery process, TADDM also captures open port and listening
process information. After all of the given set of systems is discovered, TADDM
applies a heuristic-based process to determine the implied relationships between
configuration items (CIs) that it has found. For example, a Web server might be
communicating through a specific host port, and an application server might be
listening to that port on that host. TADDM leverages the implied relationship to
build a complete dependencies graph automatically.

1.4.4 Reconciliation

Because multiple products manage the IT environment, each product collects
data about the configuration item (CI) for which that product is responsible.
Products from multiple vendors, or even the same vendor, often store their
collected data in various ways. The information in each product data store might
indeed be referencing the same actual CI in the environment, but it might have
different information captured as part of the processing. For example, a licensing
software application might identify a computer system in the network by
collecting the manufacturer, model, and serial number information along with the
system board Universally Unique Identifier (UUID) as a ‘fingerprint’ for the given
system. However, another product used for asset management might identify the
computer using the Media Access Control (MAC) address of the network
interface card (NIC) and the system board UUID. If data from these two OPMs is
imported into TADDM (which also might have discovered the same computer
system), there is potential for multiple CI entries to be created for the same CI in
the database.

12 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

This situation is addressed in the CDM through the use of naming rules that are
defined for each class in the data model. Naming rules have these major
components:

� Class: The class used to name instances, such as ComputerSystem

� Superior class: A class larger than the given class (if it exists); as an example,
the OperatingSystem class is named as a subordinate to the ComputerSystem
class. This example means that the naming rule for an operating system
includes the computer system on which it is installed.

� Naming attribute: A string that denotes an attribute, which can be used in
naming the CI.

� Priority: A non-negative integer signifying the priority of the naming attributes
in identifying a CI

For example, Table 1-1 shows the naming rules for the ComputerSystem class.

Table 1-1 ComputerSystem naming rules

As an instance of the ComputerSystem class is created, the naming rules are used
to generate the Type 3 GUID1, using the naming rules met and the associated
priority. If any existing CI instance matches the GUID, the two CI instances are
merged.

In our previous example, the fact that both OPMs are able to read the system
board UUID (which is all that is needed to match the naming rule with priority 2)
results in merging the CI instances in the CMDB.

Priority Attributes

0 Signature

1 Manufacturer, Model, Serial Number

2 systemBoardUUID

3 primaryMACAddress

4 hostSystem, VMID

5 ManagedSystemName

6 VMID, Manufacturer, Model, Serial Number

1 Refer to Internet Engineering Task Force (IETF) RFC 4122 for more information about GUID
generation.

 Chapter 1. IBM Service Management overview 13

1.5 Summary

Managing IT environments is a complex and often frustrating proposition. This is
particularly true in modern distributed, multi-national and multi-application
deployments. In order to gain control of these environments, it is vital that an
accurate understanding of the environment is established and that information is
made available to all parties involved in managing the environment.

The ITIL library outlines the best practices for managing IT service environments.
IBM Service Management leverages the best practices of ITIL and provides a
comprehensive and robust solution. IBM Service Management incorporates a
broad array of applications and best practices to give IT organizations control of
the infrastructure.

TADDM is a vital component in the IBM Service Management initiative. The
automatic discovery of applications, software, hosts, and other IT components,
along with the dependencies that exist among these components, is critical in
understanding the environment. The automatic creation of topology maps that
reflect the dependencies and relationships supports robust decision-making
when addressing outages, performance issues, upgrades, and change planning.
In the next chapter, we explore TADDM in greater detail.

14 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 2. Introduction to Tivoli
Application Dependency
Discovery Manager

In this chapter, we provide an overview of the Tivoli Application Dependency
Discovery Manager (TADDM).

In general, we describe:

� A description of TADDM
� A high-level overview of how TADDM discovery works
� An overview of TADDM features
� Examples of common uses of TADDM

2

© Copyright IBM Corp. 2008. All rights reserved. 15

2.1 TADDM overview

TADDM is an auto-discovery solution that provides automated application
dependency mapping and configuration tracking. It provides a high level of
visibility into how the computing infrastructure actually delivers the critical
applications supporting business operations.

Furthermore, TADDM provides a starting foundation for transforming your IT
service management strategy. This transformation can be accomplished by
augmenting TADDM application mapping data with other enterprise application
data, such as governance, finance, and so on.

2.1.1 IT problems addressed by TADDM

Today’s composite applications (for example, Java™ 2 Platform, Enterprise
Edition (J2EE), .NET, and so on) consist of large numbers of infrastructure
components that have complex runtime dependencies. Without visibility into
these applications and their supporting infrastructure, it is difficult to effectively
deliver and manage mission critical business services. This problem has become
even more acute with the accelerating rate of change in today’s application
infrastructure.

TADDM helps you answer the following important questions about your
enterprise computing environment:

� How does my infrastructure support the delivery of business applications and
services?

� What are the interdependencies among my business applications, my
software applications, and my physical components, such as hosts and
network devices?

� How can I understand the impact of a single configuration change on my
business application or service?

� What changes are taking place in the application environment and where?

� Am I solving the problems that are introduced by changes quickly and
efficiently?

In order to improve their problem detection, isolation, and resolution processes,
businesses require complete and accurate cross-tier runtime dependency and
configuration tracking. Application visibility is equally important for implementing
configuration consistency audits within the enterprise to ensure compliance to
technology and regulatory standards.

16 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Additionally, to effectively implement IT Service Management initiatives,
enterprises need to incorporate and correlate IT infrastructure information with
data from other enterprise applications, such as governance, finance, and
service desk. The TADDM Product Console has the ability to supplement
application maps with queries into other enterprise data sources.

TADDM is a tool that helps IT operations personnel to ensure and improve
application availability in application environments. TADDM provides the
operational staff with a top-down view of applications so that the staff can quickly
understand the structure, status, configuration, and change history of the
business-critical applications. This top-down view enables immediate isolation of
issues during performance or availability problems and more effective planning
for nondisruptive application change.

By providing top-down, cross-tier views of how the IT infrastructure actually
delivers applications, TADDM allows IT organizations to:

� Understand the structure of interdependent and complex applications

� Rapidly isolate configuration-related application problems, reducing
troubleshooting time dramatically

� Better understand the impact of component-level events in order to sort
issues based on application and service impact

� More effectively plan change so that application upgrades and deployments
can occur without disruptions

� Create a shared topological definition of applications for use by other
management applications, such as service level managers and provisioning
tools

2.1.2 TADDM capabilities

In this section, we discuss the capabilities of TADDM.

Native discovery and application mapping
TADDM delivers native discovery capabilities that your organization can use to
obtain a detailed understanding of its supporting infrastructure. Native discovery
includes discovery down to layer 2 network devices, storage devices, cross-tier
dependencies, and runtime configuration. Unlike products with limited abilities to
visualize infrastructure, TADDM provides detailed maps of business applications
and their relationships to one another (Figure 2-1 on page 18).

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 17

IT organizations can leverage automated maintenance of these application maps
and easily integrate this data with other enterprise information that helps to:

� Support cost-effective and successful implementation of business service
management initiatives using predefined integration with IBM Tivoli Business
Systems Manager and other business service management tools

� Dramatically lower the business risks of service failures and inconsistencies

� Facilitate efforts to comply with technology and regulatory standards

� Significantly reduce problem isolation time

Figure 2-1 Discover transactional relationships between the components and the applications

TADDM provides the breadth and depth of application infrastructure visibility that
organizations need to coordinate and help manage configuration changes and
processes throughout an enterprise. With more than 200 sensors available at
installation, TADDM provides complete visibility into operating systems, custom
application platforms, middleware, network routers and switches, and packaged
applications.

Within applications, TADDM provides visibility into all of the relevant information
that is needed to optimize service delivery and agility, which includes:

� Changes to deployed application modules

� Dependencies between individual software processes, whether they are
running in Microsoft® Windows®, Linux®, UNIX®, or mixed environments

18 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� Dependencies on critical network services, such as Lightweight Directory
Access Protocol (LDAP), Network File System (NFS), and Domain Name
Service (DNS)

� Software-logic dependencies on the physical network (including layer 2) and
storage layers

You can also extend TADDM to meet your specific needs through the use of
custom server extensions and templates.

Data integration and federation
With few exceptions, organizations will need to share data from another source
and bring it into TADDM. To facilitate this process, IBM developed the concept of
a discovery library. The discovery library initiative is designed to ease the
sharing of data across multiple applications through the use of common
specifications and the common data model (CDM). It uses an XML specification
called Identification Markup Language (IDML) that enables you to collect data
from IBM Operational Management Products (OMPs), independent software
vendor (ISV) OMPs, client spreadsheets, and more. IBM provides access to
IDML files through Discovery Library Adapters (DLAs) for many IBM and ISV
OMPs, including:

� IBM Tivoli Provisioning Manager
� IBM Tivoli Configuration Manager
� IBM Tivoli Monitoring software
� Tivoli Business Service Manager
� BMC Remedy
� HP ServiceCenter
� Many other Tivoli and third-party operational management products

TADDM maintains the connectivity to (and relevance of) the source data through
federation. That is, the database represents a logical aggregation of many real
databases. Only certain inventory or asset management application attributes
(typically, those attributes that are configurable and belong under change
control) are actually populated in TADDM. However, there are many additional
attributes that might need to be accessed at any given time. TADDM uses IBM
WebSphere® Information Integration technology to obtain real-time access from
source OMPs. This technology enables an organization to create a single,
master view of business objects from disparate sources and augment TADDM
with additional rich content.

Reconciliation
Combining multiple data sources into a single, logical view might create duplicate
entries of the same configuration items (CIs) if the data was not reconciled.
Typically, multiple OMPs manage the same CIs, but each application has its own

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 19

local data store and CI representation, which generates the possibility of
inconsistencies and errors.

IBM wrote this reconciliation logic into the TADDM common data model for each
CI type. Consequently, as the database imports data from management
applications, it also compares the data using the reconciliation logic and corrects
duplicate instances of the same CI.

Synchronization
One of the main challenges that IT organizations have with their existing
approaches to managing change is the inability to manage and monitor
configuration drift. TADDM addresses this challenge by allowing you to compare
CI configurations with a “golden master” that reflects any approved changes. The
comparison identifies where discrepancies from the master exist down to the
attribute level.

The database also provides a reporting capability for monitoring where the
configuration drift (the variance from your desired state configuration) is
greatest, such as with applications, networks, or servers. Consequently, the IT
organization can quickly understand the level of unauthorized change activity
occurring in the environment.

2.1.3 Entities discovered by TADDM

TADDM discovers configurations and interdependencies across the following
environment entities:

� Application components, such as Web servers, application servers, and
databases

� System components, such as hosts, operating systems, load balancers, and
database servers

� Network components, such as routers, switches, and firewalls

� Services, such as Domain Name System (DNS) and Lightweight Directory
Access Protocol (LDAP) services

20 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 2-1 Entities discovered by TADDM

Entity Description

Network tier TADDM discovers the following devices at the network
tier, along with the MIB2 (RFC 1213) parameter values
for each device:
� Routers
� Switches
� Load balancers
� Firewalls
� Generic IP devices

System tier TADDM discovers the following devices at the system
tier:
� Server hosts and disks
� Host IP interfaces
� Database servers
� Load balancers or clusters

Application tier TADDM discovers the following components at the
application tier, along with version, configuration files and
properties, host information, and vendor specific
extensions for each component (except the generic
processes):
� Custom servers, based on custom templates that

you design
� J2EE application servers and configurations
� J2EE and Java 2 Platform, Standard Edition (J2SE)

components and modules
� Web server components
� Web modules, configuration files, and installation

directories
� Generic Java virtual machine (JVM) processes
� Databases

Infrastructure service
components

The system infrastructure services that support the
application environment are discovered along with the
dependency structure between these service
components and the application components. The
infrastructure service components are:
� DNS and Network File System (NFS) services
� LDAP

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 21

2.2 The TADDM discovery process

TADDM uses agent-free automatic discovery, together with a Data Center
Reference Model to produce complete cross-tier dependency maps and
topological views.

2.2.1 Discovery requirements

TADDM discovery requires discovery setup information:

� The discovery scope

Typically a valid IP range, subnet, or a specific address, the discovery scope
signifies the span of the discovery process.

� Access Lists

Access Lists specify the read-only access credentials that are needed to
discover and query the components for the appropriate configuration
attributes and dependencies. The access mechanism varies based on the
type of components discovered, for example:

– Simple Network Management Protocol (SNMP) community strings to
discover the network elements

– Secure Shell (SSH) to discover the configuration and dependencies of the
UNIX hosts or operating systems

– Windows Management Interface (WMI) to discover the Windows operating
system and its applications

– Protocols, such as Java Management Extensions (JMX), SQL, Lightweight
Directory Access Protocol (LDAP), and others, which are standard access
mechanisms to discover application software

Relationship structure In addition to the discovery of components, the physical
and logical connectivity at the network, system, and
application tiers is discovered at the following level of
support in each of the tiers:
� Layer 3 IP connectivity
� Layer 2 connectivity
� Application component runtime dependencies
� Infrastructure service dependencies

Entity Description

22 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� Schedule

You can execute the TADDM discovery process on demand, as part of a
schedule, or driven by events that are triggered externally.

2.2.2 The discovery process

As a high-level overview, when a discovery is initiated, the TADDM discovery
engine proceeds through a multi-step, iterative process:

1. The discovery engine uses standard protocols to inspect the defined
discovery scope to identify the IP nodes (addresses) of all installed devices.

2. The discovery engine deploys discovery sensors for each valid IP node in the
scope. These sensors determine and collect the identity, attributes, and
settings of each application, system, and network component.

3. The discovered objects are referenced against the Data Center Reference
Model signatures for identification and classification.

This process is iterative—each discovery sensor executed can spawn other
discovery sensors (for example, a host discovery triggers the discovery of
applications and services that reside on the host) until the entire infrastructure
is discovered.

After all sensors have completed processing, TADDM applies a
heuristic-based algorithm to analyze the dependencies among the
components that it has found. TADDM uses this analysis to create the
topology maps.

4. Upon completion of discovery, TADDM processes the discovered component
data to populate the Configuration Management Database (CMDB) and
generates a graphical representation of the infrastructure topology at multiple
levels: physical, application, and business service.

Subsequent discovery runs update the database and topology maps, while
maintaining a comprehensive change history of the infrastructure
configuration and dependencies.

5. The Product Console provides analytics and topological views of the CMDB.

2.2.3 Discovery sensors

Discovery sensors are small programs that collect data specific to the application
for which they are written. These sensors also use protocols that are specific to
the resources for which they are written, including:

� JMX
� SNMP

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 23

� Telnet
� SQL
� SSH
� Windows Management Interface (WMI)
� SAP Computer Center Management System (CCMS)
� SAP System Landscape Directory (SLD)

During discovery, a secure connection is established between the TADDM
Server and the targets to be discovered. The sensor, emulating a user, logs on to
the target system and runs commands that are part of the native OS. This data is
encapsulated and sent back to the TADDM Server for analysis, and the sensor
exits. The TADDM Server processes the returned data and potentially associates
it with data from other sensors. This cross-analysis and comparison effectively
discover the target resource and its relationships. Discovery is a multi-threaded
process and usually occurs on multiple targets at the same time.

The primary job of a sensor is to discover CIs, create model objects, and then
persist the model objects to the CMDB. As mentioned earlier, discovery
execution is an iterative process. It begins with a seed, which is a combination of
scope, credentials, and protocol. The process goes on to determine whether the
initial target being discovered is a network device or a computer system. After
the target identity is established, the discovery engine deploys more sensors to
discover further information. These sensors discover with greater specificity the
in-scope devices and applications that are running in the environment.

For example, if the target happens to be a computer system, the next sensor
deployed will attempt to determine the operating system installed on the target. If
the sensor determines the operating system, further OS-specific sensors are
deployed to determine running applications and OS-level data (such as file
systems, network devices, and so on) until there is nothing left to discover. At
each step of the way, as more information is learned, the discovery engine often
starts more specific sensors to discover these environments.

2.2.4 TADDM and secured environments

TADDM is designed to work in secure environments to enforce authentication
and to protect confidential information. Each user must have a valid TADDM user
account to use the Product Console to access discovered information about
network and infrastructure components. You can use the Domain Manager user
interface (UI) to configure user accounts.

Note: Unlike many other discovery tools, TADDM only discovers running
applications on a host as opposed to installed applications.

24 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

When you select the “Establish a secure (SSL) session” option while starting the
Product Console and logging in, TADDM encrypts all data (including user names
and passwords) before it transmits the data over the network. When attempting
to discover components in the environment, the TADDM Server uses SSH to
securely communicate with all computer hosts and other devices that support
SSH. The TADDM Server supports key-based SSH authentication and
login-based, password-based SSH authentication. When login-based,
password-based SSH is used, TADDM uses the user names and passwords that
you define in the Access List to log in to the computer hosts to be discovered.

2.3 TADDM features

We describe several of the TADDM features in the following sections.

2.3.1 Auto-discovery

Discovery solutions typically use one of two paradigms to discover and collect
configuration information. The first paradigm is to install a resident agent on the
target system to be managed. The second method is agent-less, in which the
management application actively probes the target system without installing
agent technology. TADDM agent-free discovery engine manages the overall
discovery process:

� Broad and extensible coverage across L2 through L7 components

� Deep cross-tier, runtime detail

� Comprehensive view of runtime dependencies across application, system,
storage and network tiers, and supporting virtualized environments

� Fully automated application discovery

2.3.2 Open API and SDK

TADDM was designed to integrate into the modern data center environment. To
facilitate rapid integration, TADDM provides a complete software development kit
(SDK) that includes a full set of data, process, and event application
programming interfaces (APIs). TADDM is also provides predefined Discovery
Library Adapter (DLA) integration with other management applications from IBM
Tivoli, Micromuse® Netcool®, and other vendors. This integration allows
leveraging of application topology data for automating and scaling other
application management tasks, such as Service Level Management and IT
automation.

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 25

2.3.3 Deep configuration detail

TADDM discovers details, such as OS patches, deployed application objects,
and hundreds of configuration values. For example, in a typical 100-server
application environment, TADDM captures values for over 27 000 individual
settings. TADDM allows clients to rapidly isolate and track changes for all
relevant information, reducing or eliminating change-related slowdowns and
ensuring consistency and compliance.

2.3.4 Discovery profiles

TADDM incorporates the use of discovery profiles. A profile provides granular
control over the discovery process. For example, certain sensors support
multiple modes of discovery, such as shallow or deep discovery. Using a profile,
sensors can be disabled or enabled, the discovery mode set, scope elements
restricted, and more refinement of the discovery process can be established.
Therefore, one profile can disable the DB2® sensors for a particular set of
servers, and another profile might have the DB2 sensors enabled for another set
of servers.

2.3.5 Credential-less discovery

TADDM also provides the ability to perform credential-less discovery for
network-based IT asset discovery and categorization. You can use
credential-less discovery to discover active computer systems in the runtime
environment. This discovery, known as a level 1 discovery, discovers all
computer systems in the scope that you designate in your environment. It also
attempts to determine the operating system that is running in each computer
system with a certain level of confidence. One use for this discovery information
is to provide a starting point for establishing the credential list needed to further
discover your environment.

2.3.6 Change tracking

A single change can impact multiple components and sometimes the entire
application environment. TADDM pinpoints the location of change in the
infrastructure to expedite troubleshooting. In addition to identifying change, the
“before” and “after” parameters or settings are available.

Note: For more information about the levels of discovery and their use, refer
to 2.2, “The TADDM discovery process” on page 22.

26 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

2.3.7 Secure interface

TADDM coexists with security implementations and policies to perform
discovery. The Domain Manager UI provides a separate secure HTML interface
that isolates TADDM administrative tasks and user access definitions from the
main systems and application data in the Product Console. In addition, the
Product Console is also accessible using SSH as discussed earlier.

2.3.8 Central viewing console for multifunctional teams

By providing a centralized view of the entire application environment, the Product
Console eliminates the manual tasks of assembling and documenting complex
configuration and relationship data from disparate functional groups. An
overview topology gives users a quick understanding of which components
deliver the business service. The infrastructure topology lets team members
quickly navigate from the overview down to the component details to help
localize where changes occurred. Multidisciplinary teams can share the same
information to help with change tracking and troubleshooting.

2.3.9 Analytics

You can generate reports and perform analytics to monitor and troubleshoot
configuration changes in your environment, such as:

� Identify changes in component configurations, perform component
comparisons, and identify dormant components.

� Produce a consolidated summary of changes to a specific business
application or throughout your entire environment.

TADDM provides several types of reports that contain detailed information about
the components in an infrastructure and about the changes that occurred in
components over a specified time period. After you create a report, you can sort
the information in the report, edit the column layout, print the report, and save the
report to various file formats.

When considering the inherent complexity in the original environment and the
need for change to occur in a predictable manner, managing IT environments is
a complex process. There is another consideration that often arises, which is the
need to quantify what happened (reporting) and, further, to audit these reports.
The effort to simply gather the information and certify its correctness is
considerable, and it is a generally accepted truism that most data is obsolete as
soon as the report is printed. There is, however, an increased awareness in
today’s IT world that there are significant auditing initiatives that must occur for

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 27

certain industries, and the penalties for incorrect data can include jail time. These
audit initiatives are conducted for various end goals, such as ensuring:

� The security of sensitive patient data
� Access to critical applications is limited
� Code that is purchased is indeed running in the company’s environment

Auditing is a function that needs to be quantified and automated as much as
possible to reduce potentially disastrous results.

Inventory Report
The Inventory Report is a comprehensive infrastructure asset report that
provides the following information:

� Hardware
� Software
� Entire infrastructure
� Business application
� Grouped by type:

– Software, services, network, system, and other devices
– Web servers, application servers, and clusters
– Apache Web servers and Weblogic application servers

Use case
You can use the information in the Inventory Report to:

� Populate infrastructure into an Asset Management Solution or database
� Facilitate Sarbanes-Oxley Compliance reports

Change History Report
A Change History Report shows:

� A changed configuration attribute
� When the change was detected
� Old and new value of the attribute
� Type of change: Created, updated, or deleted

Use Case
You can use the information in the Change History Report to:

� Troubleshoot an application:

– Order Management worked yesterday, but not today. What changed?

– Only show changes to the infrastructure that might be related to the
problem.

28 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� Troubleshoot a component

I was able to ping the gateway from my virtual machine yesterday, but I
cannot ping the gateway today. I wonder if there was a configuration change?

� Audit change in environment

Additional disk space must have been added to that server. Was it?

Component comparison
You can compare components after they are discovered:

� Comparison options:

– Deep comparison

Include all dependencies of the component in the comparison

– Include system

Include the host on which the software component resides

– Include services

NFS, DNS, LDAP, or AD dependencies

� Use cases:

– Ensure component consistency in cluster

– Ensure accurate staging to production application provisioning

Figure 2-2 on page 30 shows a sample comparison report where multiple
versions of component configurations are compared and differences displayed.
Notice that the number of CPUs and memory size for the missouri host differ
from the oregon host (the standard).

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 29

Figure 2-2 A comparison that shows differences across configuration items

The tracking functions of TADDM provide the necessary capabilities to identify
unauthorized changes to the infrastructure, which in turn help you streamline
your processes and the accountability of the entire IT organization.

2.3.10 Versioning

TADDM provides versioning capability for discovered data.

30 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Versioning discovery data
Versions are read-only views of the entire topology. It is a snapshot of the current
infrastructure:

� Versioning data provides support for:

– Analytics comparisons between versions
– Disaster recovery planning

� Versions differ from change history:

– Comparison of versions shows only the differences between two
components, not all of the intermediate configuration changes.

– Versions survive until the user deletes them.

– Change history for a component is deleted along with the component, but
version information is retained until the version is deleted.

– Clearing the topology clears all components and the corresponding
change history for those components, but it does not delete versions.

2.3.11 Summary of TADDM features

TADDM’s flexible approach to discovery and automatic mapping of
dependencies from layer 2 through 7 gives you the visibility and flexibility that are
needed to improve service availability at your company. The information that is
provided by TADDM supports the alignment of IT with business goals. TADDM’s
unique approach of combining agent-less, credential-free, and credentialed
discovery provides control over where and what you discover and the depth of
that discovery. TADDM allows you to continue to leverage your best practices for
the business, but it also arms you with powerful data analysis so that you can
make the best informed decisions for your organization.

IT organizations can:

� Ensure cost-effective and successful implementation of their Business
Service Management initiatives

� Dramatically lower the business risks of service failures and inconsistencies

� Ensure compliance to technology and regulatory standards

� Reduce the time needed to resolve problems

2.4 Uses of TADDM

The following sections provide an overview of a couple of the common uses of
TADDM.

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 31

2.4.1 Configuration management foundation

Today’s applications are often built using reusable components to reduce
turnaround time for developers. Furthermore, application infrastructure
components are reused in their entirety (such as databases) to create composite
applications. Although this reuse reduces the time to create large business
services, at times these composite applications become unwieldy to track. A
typical example illustrates the multiple components and computers that are
involved in delivering a service:

� A Web server provides a user interface as the front end of the application.

� Another application, such as a J2EE server, provides a functional back end.

� A database provides information and records for use by the other
components and stores the results of that work.

This combination of components results in multiple servers to maintain,
presenting a problem in itself. You can often patch a small number (fewer than
ten) of machines manually, but as the number of systems increases, it becomes
desirable to have a repeatable, consistent method. This capability is usually
accomplished through either automation through code or rigid oversight through
process control. Implementing TADDM can provide the foundation for
introducing Information Technology Infrastructure Library (ITIL) practices into an
organization by providing accurate and timely infrastructure and application data.

2.4.2 Impact analysis visibility

In addition to the complexity of size and the number of components, there is a
server consolidation trend, which means using multiprocessor machines to
reduce the overall number of systems to manage and increase the CPU
utilization of servers that might not have much load under the typical
single-server/single-application architecture. However, server consolidation
creates a new dilemma regarding the mappings of functions to a machine or an
application. For example, several instances of databases or Web servers can
coexist on the same host machine, and each instance is capable of performing
separate critical tasks in the environment.

Using virtual machines is also a popular method of recovering CPU and memory
that otherwise is wasted, but it can complicate systems management. Because it
can be difficult to determine the effect of taking down a virtual machine or a host
machine and the associated applications for servicing, it might lead to paralysis
in the IT center, which can result in security and performance vulnerability as
patches are delayed, applications are not upgraded, and hardware upgrades are
not performed in order to meet increased capacity requirements.

32 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

TADDM provides visibility into the IT infrastructure relationships and
dependencies to greatly enhance the impact analysis processes of change
management in any environment.

2.4.3 Change management support

Change management process control is another area that often creates issues.
The IBM Service Management products alleviate these issues and TADDM is a
central part of this strategy. Change must occur in a production environment for
many reasons, including security patches, operating system patching and
upgrades, application introduction and retirement, or hardware and network
upgrades.

The process for change management is filled with review meetings, back out
procedures, risk assessment meetings, determination for which components are
worked on directly, and which components are affected by the temporary
unavailability of systems, as well as code-level compatibility after the change.

If these proceedings are supplied with accurate and consistent data, they lead to
consistency in the change process and reduced disruption caused by change. In
addition, clear records are kept to determine cause and effect in troubleshooting
a problem or incident management if troubleshooting a problem or incident
management become necessary. The application map, which is created by
TADDM for business applications and services, highlights changed components.
Using the capabilities of TADDM ensures that everyone has access to the same,
updated information, which accurately reflects the state of the IT infrastructure.

 Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager 33

34 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 3. Tivoli Application
Dependency Discovery
Manager architectural
design

In this chapter, we describe the architecture and components of Tivoli
Application Dependency Discovery Manager (TADDM).

In this chapter, we discuss:

� “Introduction” on page 36
� “TADDM architecture overview” on page 38
� “TADDM terminology” on page 46
� “eCMDB” on page 54

3

© Copyright IBM Corp. 2008. All rights reserved. 35

3.1 Introduction

Today’s IT organizations are under enormous pressure to deliver high levels of
service with agility and efficiency. At the same time, they often find themselves in
reactive mode, relying on inadequate tools and manual processes to solve
problems that exist in an environment of rapidly increasing complexity and
change. The complexity introduced by component architectures, such as Java
Two Platform, Enterprise Edition (J2EE) and .NET, increased virtualization of
software, OS, and networking layers, as well as ever increasing business
demands, means that having a shared understanding of how all of the IT
infrastructure components are related and configured to actually deliver business
applications is critical to IT success1.

Leading IT organizations are now evaluating and implementing solutions to this
problem using application mapping products, such as TADDM. TADDM delivers a
shared understanding of the components, dependencies, and configuration of
critical business applications. This visibility is critical in order to:

� Meet service level commitments
� Eliminate unanticipated change-related problems
� Reduce problem resolution times
� Enforce technology consistency
� Process conformity and compliance policy
� Enable agile and responsive change

To achieve the necessary levels of required visibility, a solution must:

� Provide a fully automated and accurate application-centric view into the
runtime structure of business applications, including their software and
hardware components, their cross-tier dependencies, and their
configurations.

� Store these application maps and all of their associated data in a well-defined
application maps database that is:

– Comprehensive enough to cover all common runtime data center
components, yet flexible enough to meet the specific needs of each
implementation

– Detailed to include deep, runtime configuration and dependency
information

1 Refer To Gartner (Colville) “Organizations Are Paying More Attention to Configuration
Management”, 31 March 2005; and Enterprise Management Associates, “The ITIL Configuration
Management Database: Panacea or Pandora’s Box?”, December, 2004.

36 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

– Easily accessible and understood by operations personnel

– Programmatically sharable with other management and enterprise
applications

� Scalable to enterprise levels

� Able to provide its value rapidly, securely, and with low overhead

� Capable of deploying and working securely, consistent with enterprise
security policies and infrastructure

The high-level product requirements in the previous list drove the design and
architecture of TADDM. In order to meet these requirements, five critical design
decisions were made in the architecture of TADDM:

� Build the product around a predefined, application-centric, standards-based,
extensible reference model, which eliminates the need for custom modeling
with every implementation.

� Choose an agent-free approach to eliminating the performance and security
risks and the implementation and qualification expenses of deploying a new
set of management agents.

� Publish a well-defined schema with a complete set of documented data and
process-level APIs to enable rapid integration into existing management
products and processes.

� Provide the ability to federate and extend the application maps database in
order to allow the product to be deployed at an enterprise scale.

� Utilize existing secure protocols and standards to make implementation
secure and straightforward.

The combination of these key design decisions translates into a solution that
provides complete visibility into how the infrastructure delivers applications and
services, can be securely and rapidly deployed, is easily integrated, scaled, and
extended, and whose overall cost of ownership is the lowest possible. Solutions
lacking in any of these areas face time and cost obstacles in successfully
providing the visibility required to manage and improve service delivery.

In this chapter, we provide a technical evaluator with a detailed description of the
TADDM architecture and how the product works to deliver complete
infrastructure visibility. It includes:

� An overview of the TADDM architecture

� A description of how the TADDM product creates and maintains its
application maps

� An overview of the Enterprise Configuration Management Database
(eCMDB) architecture and functions

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 37

By deploying TADDM, organizations not only improve application availability and
lower cost today, but they lay the groundwork for building a truly scalable IT
service management capability. The data and knowledge that TADDM creates is
a key building block not only to improving service delivery and management, but
to automating and enabling capabilities, such as dynamic application
provisioning, measurable and enforceable Service Level Agreements (SLAs),
and effective IT Governance. In the remainder of this chapter, we focus on how
TADDM is architected and works to deliver this capability.

3.2 TADDM architecture overview

In this section, we describe each element of the TADDM architecture. Figure 3-1
illustrates the TADDM architecture.

Figure 3-1 TADDM architecture

IBM Common Data Model (CDM)
A data model is a conceptual representation of the structure of the data that is
stored in the database. In terms defined by the IT Infrastructure Library (ITIL), the
data structure consists of the contents of the data objects or Configuration Items
(CIs), the associations between data objects, and other possible rules to
constrain the operations of the data objects. Without a reference data model,
implementation is dependent on expensive, time-consuming, incomplete, and
error-prone manual modeling. The TADDM Database data model is based on the

38 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Common Data Model (also referred to as the CDM), which is an information
model that can integrate data between Tivoli Management Products. The details
of the CDM are documented with Unified Modeling Language (UML). The data
model is implemented with Java persistent objects that allow Java programmers
to manipulate objects and relationships independently of the physical storage.

Agent-free discovery engine
The discovery engine orchestrates and manages the discovery process. The
engine instructs the discovery sensors, which are server-based components that
use the knowledge that is built in the reference model to interrogate the data
center components and gather the necessary information to build the application
maps database.

Topology manager and topology builder
Upon completion of the discovery process, the topology manager consolidates
the discovered data and generates a cross-tier topological representation of the
application. The application topology includes its underlying infrastructure
components (software, systems, and network components) and their associated
configurations and cross-tier dependencies.

TADDM Database (CMDB)
The TADDM Database is a cross-tier representation of the application topology,
its components, and their configurations. The Configuration Management
Database (CMDB) also tracks and documents all configuration changes. The
database is optimized for both read and write access and supports extensive
query capabilities.

TADDM API
TADDM’s open and published API interfaces easily with third-party ecosystem
applications. The TADDM API provides authenticated and secure access to the
underlying TADDM Database through the Data API and the TADDM process
engines through the Control API. TADDM also provides an event API to import
and export events to other management applications.

Discovery Library Adapter
The Discovery Library Adapter (DLA) provides an open standards-based
interface to integrate data from older data stores into the TADDM Database.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 39

3.2.1 TADDM architectural details

In this section, we provide the details for each of the major architectural
components by:

� Describing both the rationale for design and an overview of implementation.

� Explaining how the pieces work together to populate the application mapping
database and create and maintain application maps.

IBM Common Data Model (CDM)
This model represents the foundation of TADDM and provides the definition for
the data center applications and their supporting infrastructure components,
cross-tier relationships, and configuration attributes. Without a reference model,
implementation is dependent on expensive, time-consuming, incomplete and
error-prone manual modeling. TADDM provides definitions for a wide variety of
commonly deployed software applications, hosts, network devices, and network
services. The extensible reference model includes an event propagation model
that provides the underpinnings to interpret infrastructure component events in
the context of the applications that they deliver.

The CDM is based on the Distributed Management Task Force (DMTF) Common
Information Model (CIM) object model. You can find more information at the
following Web site:

http://www.dmtf.org

For platform-specific extensions, such as JSR773, access the following Web
site:

http://www.jcp.org/en/jsr/detail?id=77

The CDM includes a wide variety of object types, including:

� Software components (Web, application, and database servers)
� Hosts and operating systems
� Network elements (routers, switches, load balancers, firewalls, and storage)
� Network services, such as Lightweight Directory Access Protocol (LDAP),

Network File System (NFS), and Domain Name System (DNS)

The CDM is easily extensible based on client-specific needs.

The model representation for each component type includes:

� Signature

The signature uniquely identifies the component type and its dependencies
and configuration template.

40 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.dmtf.org
http://www.jcp.org/en/jsr/detail?id=77

� Configurations

Configuration data elements include:

– The static and the dynamic configurations of the component.

The runtime resources that the component uses (for example, the Java
Database Connectivity (JDBC) connection pools or the Java Message
Service (JMS) topic queue that an application server uses, the patches
deployed on an OS, or the IP routing table of a network element)

– The deployed application objects (for example, the Enterprise JavaBeans
(EJBs) and JavaServer Pages (JSPs) on an application server that
implement the business application and services

� Dependencies

Dependencies model the runtime relationships among the various
components within the data center. TADDM discovers and categorizes
several types of cross-tier dependencies, including:

– Transactional dependencies

Transactional dependencies are the logical connections (IP-based)
between the components of a distributed application. These connections
represent the provider-consumer relationships between the components,
for example, an application server is the consumer of a service provided
by a database server.

– Containment dependencies

Containment dependencies are the cross-tier hierarchical relationships
(for example, an application server is deployed on a host), as well as
logical grouping relationships (such as a Web, application, and database
server that make up a business application).

– Service dependencies

Service dependencies are the network services upon which most
infrastructure components depend (NFS, DNS, and LDAP services).

Figure 3-2 on page 42 is an example of the Common Data Model specification.
This example illustrates the ComputerSystem sub-model that defines the key
object for Tivoli Management Products. In the Common Data Model, a computer
system is a combination of hardware (the machine) and software (the operating
system) and is flexible enough to allow the representation of various
combinations of hardware and software. In the ComputerSystem sub-model,
both the computer system and the operating system are considered
combinations of interesting entities. As a result, both the Common Data Model
specification and the ComputerSystem sub-model are derived from the
superclass System. There are also linkages from this model to the Process
sub-model and the FileSystem sub-model. Operating system processes are

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 41

considered specific parts of an overall business process. One important concept
that is included in this model is the representation of the OperatingSystem
sub-model as a place where software can run a hosting environment or an
interface. This concept is also applied later to other hosting environments, such
as WebSphere.

Figure 3-2 TADDM data model

Data model extensibility
The IBM Common Data Model can be easily extended in the field. Through the
Java Control Console or the Domain Manager user interface, you can easily add
extended attributes to existing object classes. Also, you can either use the GUI
or the API to associate values to the extended attributes, and you can view the
populated results through the GUI.

42 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 3-3 illustrates a computer system with extended attributes.

Figure 3-3 Adding extended attributes in TADDM

Agent-free discovery engine and process
The discovery engine orchestrates and manages the discovery process. It also
instructs the discovery sensors. TADDM’s agent-free discovery engine manages
the overall discovery process. The discovery process collects the data that is
needed to instantiate the Data Center Reference Model or (Common Data
Model) to represent the specific data center infrastructure. At the center of the
discovery process are lightweight discovery sensors that build upon the Data
Center Reference Model to comprehensively discover the infrastructure
components, configurations, and dependencies. Discovery sensors use open
and secure protocols and access mechanisms to discover the data center
components. Furthermore, unlike persistent and invasive agents, discovery
sensors are centrally deployed and managed and consume minimal bandwidth
and CPU resources (less than 1% when active) in the target environment. The
discovery engine provides a workflow framework to schedule, distribute,
coordinate, and manage the various discovery sensors.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 43

For a description of the discovery process, refer to 2.2.2, “The discovery process”
on page 23.

3.2.2 Discovery extensibility

IBM provides the broadest available discovery coverage at installation of any
solution on the market. However, every data center has unique or new
requirements beyond those built into the TADDM application. To meet the
specific needs of each implementation, you can extend TADDM’s discovery
coverage through:

� Custom server templates

TADDM discovers all running software processes as part of its standard
discovery. These discovered processes can subsequently be identified and
categorized by their runtime signatures, which allow them to participate in
configuration, change tracking, and business service discovery. You can
create these custom server templates through the TADDM User Interface and
APIs.

� Sensor extensibility

You can extend the runtime behavior of a sensor. You can also code custom
logic (scriptable in Jython), which securely runs within the TADDM Database
sensor sandbox architecture and allows sensors to capture additional
attributes about the infrastructure. For example, using the scripting capability,
you can write a custom script that runs within a sensor to read or parse a
custom configuration data file to create new dependencies that the sensor
might not ordinarily discover.

3.2.3 TADDM APIs

TADDM provides an open and published API to easily interface with third-party
ecosystem applications. The TADDM API provides authenticated and secure
access to the underlying TADDM Database (through the Data API) and the
TADDM process engines (through the Control API). TADDM also provides an
event API to import and export events to other management applications.

The TADDM API provides a secure and modular interface to the TADDM
Database. The open and published API provides bindings, such as Java, Web
Services or SOAP, and shell scripts. TADDM enforces authenticated API access,
and upon authentication, all API clients are assigned access privileges that
authorize user actions. API access can also be encrypted through Secure
Sockets Layer (SSL) to ensure maximum security.

44 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

The API capabilities include:

� Data APIs provide access to the full application topologies, including the
components and their detailed configurations, as well as their runtime
dependencies. The Data APIs also provide access to the TADDM change
analytics and reporting. In addition, the Data APIs allow for the import and
storage of additional data that pertains to discovered components, such as
asset, financial, and administrative information.

� Control APIs provide asynchronous access to the TADDM discovery
processes including discovery setup, as well as the discovery scheduling and
control. Using the Control APIs, third-party solutions can control the TADDM
Server, including initiating and aborting discovery runs.

� Event APIs allow you to import third-party events into the TADDM application
topologies and export change and state events from TADDM to third-party
consoles and products.

Using the APIs, IBM provides integration to several leading ecosystem vendors,
including Micromuse, Compuware, BMC Remedy, HP Operations Manager
Software, and others. The TADDM software development kit (SDK) includes
sample integration code and integration tools that allow Java and XML-proficient
programmers to easily implement custom integration in the field.

3.2.4 Discovery Library technology

Because the CMDB becomes the central repository for configuration data for
your IT components, it is likely that you will want to load data into the CMDB that
is already known and maintained by other management solutions. For example,
you might want to load inventory data from Tivoli Configuration Manager or
monitoring probe data from IBM Tivoli Monitoring. You also might want to extract
information from the CMDB to load into operational systems management
solutions (such as Tivoli Business Systems Manager or Tivoli Provisioning
Manager) to reflect the most up-to-date configuration of the IT environment. For
these purposes, TADDM supports the IBM Discovery Library technology that is
based on the Identification Markup Language (IDML) industry standard format.

For each subsystem that supplies or consumes data, you can download a
Discovery Library Adapter from the IBM Open Process Automation Library
(OPAL) at:

http://catalog.lotus.com/wps/portal/topal

IBM provides access to the DLAs for many IBM and independent software
vendor (ISV) applications.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 45

http://catalog.lotus.com/wps/portal/topal

3.3 TADDM terminology

The following section provides an overview of the TADDM terminology.

3.3.1 TADDM Server (Domain Manager)

A domain is a logical subset of a company’s infrastructure. It can be based on
any convenient boundary criteria, such as geographical or departmental.

Domains can delineate organizational (for example, IT operations or line of
business (LOB) operations), functional (for example, finance IT domain or human
resources IT domain), or geographical (for example, United States IT domain or
Brazil IT domain) boundaries. There is typically one TADDM Server deployed per
domain to discover domain applications and their supporting infrastructure,
configurations, and dependencies.

The TADDM Server is also referred to as the Domain Manager. You might want
to use one or multiple TADDM Servers (Domain Managers), depending on how
many configuration items exist in your environment. If you have a large
environment with thousands of hardware, software, and other configuration
items, one Domain Manager might not be enough, and you can expand to
multiple Domain Managers. You can have a view of all of the aggregated data at
an Enterprise Configuration Management Database (eCMDB) Domain Manager.
In an eCMDB environment, the participating Domain Managers perform the
discoveries and supply data to the enterprise Domain Manager. Figure 3-4 on
page 47 illustrates a setup with multiple TADDM (Domain Manager) servers.

46 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 3-4 Multiple Domain Servers

The enterprise Domain Manager aggregates the CI information from the Domain
Servers. This behavior is configurable depending on the needs of an
organization. Each Domain Manager provides a Domain Manager UI to manage
TADDM users and query TADDM discovered data.

Configuration of the eCMDB is discussed in 3.4, “eCMDB” on page 54.

3.3.2 TADDM user interface

TADDM provides two user interfaces:

� Java Product Console: The TADDM Java Interface provides command and
control of the TADDM Server, advanced topology visualization and
management, and a set of change and configuration analytics.

� Domain Manager UI: The Domain Manager UI is a Web portal interface into
TADDM. This Web-based client provides a sharable interface that you can
embed in the TADDM Database.

Java Product Console
Figure 3-5 on page 48 illustrates the TADDM Java Product Console displaying
the business applications topology.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 47

Figure 3-5 TADDM Java Product Console

The Java Product Console offers an advanced, task-oriented, graphical user
interface that enables you to manage your computing environment by performing
a series of proactive management, problem identification, and troubleshooting
tasks.

48 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 3-1 outlines the key uses of the TADDM Java Product Console.

Table 3-1 TADDM Java Product Console uses

Use Description

Deployment planning and
management

The TADDM infrastructure comparison feature provides
a fast and easy method for comparing components or
sets of components between the staging and production
environments. You can run a pre-deployment
comparison to compare staging with production to
understand or verify planned changes, or you can run a
post-deployment comparison to verify that staging and
production are in sync.

Consistency checking You can use TADDM comparisons to compare a set of
components against a known good set of components.

Troubleshooting to
diagnose problems across
all tiers

You can quickly diagnose problems by using the topology
map to identify and analyze cross-tier relationships
among software and hardware components. For
example, suppose you become aware that increased
user requests to a business application are processed
slowly. You can select the impacted business application
that you want to troubleshoot, display the topology for the
application, and show the dependencies among the
application’s components.
You can also schedule a discovery to run at a specific
time and gather runtime configuration data. Following this
discovery, you can run a Change History report to see
what changed.
The TADDM Change History report enables you to
quickly detect unauthorized changes in the runtime
environment and validate configuration parameters in the
production environment before users are affected. You
can use this report to verify production configuration
parameters.

Proactive change
management

After deploying an update to the production environment,
run a discovery process on the production environment,
and save the topology. You can then open both the
production and staging versions and compare the
discoveries of the environments.

Verify production
configuration parameters

Prior to deploying application updates or changes at any
level in the infrastructure, organizations typically test the
change in the staging environment. After you verify that
the changes in the staging environment are working
correctly, you can run a discovery process of the entire
network where the staging environment resides.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 49

Domain Manager UI
Figure 3-6 on page 51 shows the TADDM Domain Manager user interface.

Schedule discovery to
detect unauthorized
change parameters

You can schedule a discovery process to run at specified
times, which enables you to gather and store the
configuration and the topologies of the runtime
environment. Later, you can create a Change History
report to detect changes in the configuration of the
components, such as application servers or database
servers and parameter changes in firewall and user
applications.

Asset management and
data center consolidation

Complex business environments result in constant
changes to the application components and their
underlying hardware devices. TADDM inventory reports
help you to make operation management decisions and
answer capacity questions, such as:
� How many applications are running on a particular

server?
� How many instances of a Web server or application

server are running to service my order entry
application?

� Do I have a sufficient number of licenses and are
they being deployed efficiently?

� I want to consolidate my data center. What is the
total number of hardware and software components
being used in my data center after a merger,
acquisition, or reorganization?

Business continuity
planning

Mission critical applications are often mirrored in a
backup data center to ensure business continuity in the
event of a disaster at the primary site. The TADDM
comparison feature enables rapid and thorough
comparisons of two installations to ensure that the
backup site is configured exactly as the primary site is
configured.

Use Description

50 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 3-6 TADDM Domain Manager UI

The Domain Manager user interface is a lightweight, Web-based interface. It
provides the following features:

� A view of data for your TADDM Server (if single domain) or an aggregate view
of data from multiple TADDM Servers in the case of an Enterprise Domain
Manager

� Extensible Web-based console with factory-supplied enterprise analytics and
a framework to easily create and add custom reports

� Open and proven TADDM APIs leveraged to integrate with external
management applications (Launch in Context)

� Launch in Context provides a view of:

– Component details
– Changes to a component

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 51

The capabilities and limitations of the Domain Manager UI are that it:

� Allows read-only access to the aggregate information

� Can report on individual domains or on a set of domains

� Does not resolve inter-domain dependencies

� Cannot initiate discoveries, only provides a view of already discovered data

� Cannot edit components

� Cannot change the scope or the Access List

� Does not show a graphical view of the topology

3.3.3 TADDM Database

You must install the TADDM Database on a separate machine. Each discovery
server, whether an enterprise discovery server or a domain discovery server,
includes a database that holds the discovered information about configuration
items and their relationships.

To install the TADDM Server, the database must be installed and running on the
other system. During the installation of TADDM, connectivity to the database is
established to populate the database.

3.3.4 Anchor servers and Windows gateways

Depending on your network, you might need to deploy one or more anchor
servers and Windows gateways in order to facilitate discovery.

Anchor servers
In order to discover components, each TADDM Server must be able to
communicate with other computer hosts and network devices. In cases when a
firewall prevents direct access from the discovery server to certain hosts or
devices, you can specify a computer system that does have access to the hosts
or devices to be an anchor host. An anchor host acts as a proxy to assist in the
discovery process.

You do not need to configure anchor hosts during the TADDM Server installation
process, but you need to include anchor hosts in your installation plan and verify
the system requirements for candidate machines.

The TADDM Server, by default, runs a local anchor process. After the TADDM
Server installation, you can use the TADDM Product Console to configure which
hosts will serve as additional anchor hosts on your network.

52 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Anchor requirements and considerations:

� You can use any operating system on which the TADDM Server can be
installed as an anchor. Refer to “Planning your hardware and software” on
page 65 for complete details about supported operating systems and
prerequisites.

� SSH software to communicate to the central TADDM Server. You need to
install Bitvise Version 4.06a or later or Cygwin SSH if you plan to use a
Windows anchor server.

� Network connectivity must exist to the remote servers within the discovery
scope in the firewall zone.

Windows gateways
If your network contains Windows-based systems and applications that are
running on Windows, you must specify a Windows system to serve as a gateway
server in order to discover information about the Windows-based systems
running in your environment. The gateway server needs to be in the same
firewall zone as the Windows hosts to be discovered. The TADDM discovery
server must be able to SSH into the Windows gateway.

You do not need to configure Windows gateways during the installation process
of the TADDM Server, but you need to include gateways in your installation plan
and verify the system requirements for candidate machines. After the installation
of the TADDM Server, you can use the TADDM Product Console to configure
which hosts will serve as Windows gateways on your network.

Gateway requirements and considerations:

� Windows Server 2003, service pack 2.

� All Windows gateways must be running either Bitvise WinSSHD 4.06a or
later, or Cygwin SSH. If you use Cygwin SSH, take all of the defaults,
cygrunsrv from the admin category (Version 1.17-1 or later), and opensshd
from the net category (Version 4.6p 1-1 or later).

� The TADDM Server communicates with the gateway using SSH regardless of
the platform that the server is using.

Note: Windows Management Interface (WMI) must be available on all
Windows hosts that will be discovered. WMI is available by default on
Windows 2000 systems and higher.

Note: An anchor and a gateway running on the same Windows system are
supported.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 53

3.4 eCMDB

In this section, we provide information about the Enterprise Configuration
Management Database (eCMDB) and about when you need to consider
implementing an eCMDB.

3.4.1 eCMDB overview

TADDM is designed to modularly scale to large data centers. You can also tune
TADDM operating characteristics (discovery engine thread counts, discovery
sensor time-outs, and so on) and increase the TADDM Server or TADDM
Database resources (CPUs, memory, and so on) to achieve increased support
for infrastructure discovery and storage.

Figure 3-7 illustrates how you can deploy TADDM in large enterprise
deployments.

Figure 3-7 TADDM deployment using eCMDB

Although it is possible to scale TADDM Servers to support large enterprise
environments, IBM offers a domain-based, best-practice deployment
architecture to elegantly scale the solution to support several tens of thousands
of infrastructure elements.

54 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Most large enterprise environments are divided into management domains that
represent the span of control of a given IT operations team. Domains can be
based on organizational, functional, and geographic boundaries or combinations
of these boundaries or other criteria. To support the operational needs of the
domain, IBM recommends a standalone TADDM Server for each management
domain. Each TADDM Server is responsible for its own domain—it discovers
and stores all configuration data for its local domain. Users of each management
domain use the local TADDM instance to manage the operational aspects of
their domain.

However, IT organizations also have the need to have cross-domain views of
their IT information, for example, the CIO might want to see an aggregate count
of the enterprise-wide Oracle deployments to ensure that the enterprise is
compliant with its licensing contracts. To address this capability, IBM provides
the TADDM Enterprise Domain Manager. The TADDM Enterprise Domain
Manager federates data from multiple local TADDM Server instances to provide
a rolled-up single enterprise-wide repository of information.

The Domain Manager provides a Web-based portal to administer the local
domain servers and to view and analyze the rolled up enterprise data. It also
provides a query and reporting interface that you can customize, which allows
data to be easily shared across the enterprise.

The following list overviews what an eCMDB does and what an eCMDB does not
do. The eCMDB:

� Does maintain change history

� Does provide bulk load and import capability

� Does provide cross-domain query capability

� Does provide a common security framework across domains

� Does provide the same API for access to data across domains

� Does merge attributes when data is retrieved from the CMDB database with
data in eCMDB taking precedence over attribute values currently on domain
(to allow for bulk loads)

� Does not perform discovery or build topology

� Does not allow a domain to belong to more than one eCMDB

� Does not allow nesting of eCMDBs

3.4.2 eCMDB synchronization

The process of synchronizing data from the domain servers in an eCMDB
implementation is analogous to the discovery process at the domain.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 55

When the discovery is completed at a domain server, the eCMDB server will
synchronize the data from that domain. As with discoveries, only one
synchronization can be running at a time. Also, if discovery is underway at the
domain server, synchronization with that domain server will fail. Many
organizations run discoveries during production hours (to get a realistic view of
the use of the systems) and run synchronization after hours to avoid this conflict.

3.4.3 eCMDB database

In this section, we provide an overview of the eCMDB database:

� The eCMDB database has the same schema as the remote domains.

� The eCMDB database requires TADDM version compatibility between the
installed domain and the eCMDB.

� You can bulk load or import data into the eCMDB database. There is no write-
through of data to the domain servers.

� Synchronized data is a copy of the remote domain data and additional
attributes that include but are not limited to:

– All housekeeping attributes for each CI, such as lastModifiedTimestamps,
version, and so on

– All select criteria required for reports on the eCMDB portal and for
inventory views on the eCMDB portal

– All the relationship tables

– Change history information from the domain

– Authorization information, such as user roles and permission

Note: For further explanation about setting up eCMDB domains and
synchronization, refer to Chapter 5, “Tivoli Application Dependency Discovery
Manager installation steps” on page 89.

56 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

3.4.4 eCMDB security

The following list contains the security changes that are applicable when you
configure an eCMDB in your environment:

� When a domain is added to an eCMDB, you need to recreate any existing
users in the domain (assigned roles and granted access to access
collections) in the eCMDB. When you add a domain to the eCMDB,
authentication and authorization for the added domain is delegated to the
eCMDB:

– Logins to the domain CMDB are now processed at the eCMDB.

– Any security manager method calls are now processed by the eCMDB.

� Active domain sessions (Java console and Domain Manager) require you to
log in again.

� Users, roles, and permissions that are viewable on the Domain Manager are
now those users, roles, and permissions from eCMDB. Users that you
created using the Domain Manager now appear automatically in the
eCMDB’s Domain Manager, because they are actually being created there.

� Roles, permissions, and access collections are stored in the CMDB and are
synchronized from the domain CMDBs to the eCMDB just as any other
objects; however, their associations are not synchronized.

� Users are not synchronized to eCMDB.

� LDAP is the preferred method of authentication for eCMDB setups, so
passwords are stored in a single place.

� Access collections cannot span CMDB domains.

� When a domain loses connectivity to eCMDB, security falls back to the
domain’s security manager.

� This synchronization works one way, from the domain CMDBs to the eCMDB,
so objects that are created at the eCMDB do not get propagated to the
domain CMDBs.

� Always create and populate AccessCollections from the domain CMDBs and
then synchronize with the eCMDB.

� Create roles and permissions from the domain CMDBs, and then synchronize
with the eCMDB.

� You can create users at the eCMDB and give access to access collections
from multiple domains.

 Chapter 3. Tivoli Application Dependency Discovery Manager architectural design 57

58 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Part 2 Tivoli Application
Dependency
Discovery Manager
Planning and
Installation

In this part, we discuss the planning and installation of Tivoli Application
Dependency Discovery Manager.

Part 2

© Copyright IBM Corp. 2008. All rights reserved. 59

60 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 4. Deployment and capacity
planning

In this chapter, we discuss the planning of a working IBM Tivoli Application
Dependency Discovery Manager (TADDM) environment that can discover the
infrastructure, application system components, and their dependencies.

In this chapter, we discuss:

� “Sizing your TADDM environment” on page 62
� “Creating a deployment plan” on page 64
� “Planning your hardware and software” on page 65
� “TADDM deployment checklist” on page 74
� “Planning worksheets” on page 76
� “Deployment planning case study” on page 80

4

© Copyright IBM Corp. 2008. All rights reserved. 61

4.1 Sizing your TADDM environment

In this section, we provide a general rule for the sizing recommendations that are
available at the time of writing this book.

4.1.1 TADDM Server sizing

The general rule for TADDM sizing is based on the number of configuration items
(CIs) per host. Although there is no common industry agreement on the number
of CIs per host, a good rule for CIs for each host is around 100 for each CPU.

The greater the processing capacity of a computer system, the more likely it is
that more business application components, or CIs, are hosted by that computer
system, which translates into the following numbers:

� One CPU hosts 100 CIs
� Two CPUs host 200 CIs
� Four CPUs host 400 CIs

The general rule for the number of CIs within a single TADDM domain is
2 000 000, which allows timely processing of around:

� 40 000 hosts if you have 50 CIs per host
� 20 000 hosts If you have 100 CIs per host
� 10 000 hosts If you have 200 CIs per host

The TADDM Server itself does not scale linearly beyond four CPUs.

4.1.2 Topology reconciliation is not a linear process

A TADDM discovery run consists of three major phases. In the first phase,
sensors are launched, and data is gathered and stored in memory. In the second
phase, which is referred to as topology reconciliation, newly discovered data
and data from previous discovery runs are analyzed, and an updated topology is
built. In the third phase, this data is stored in the database.

Increasing the number of CPUs on the system that hosts the TADDM Server
appears at first as though it decreases discovery time because of parallelism.
However, because topology reconciliation is not linear, the knee in the curve is
reached at around four CPUs.

62 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Think of topology reconciliation as an n* matrix. We do not know in advance how
many dependencies exist, and it might keep expanding, as we discover in a
tightly meshed environment where there are many dependent application
components. The number of dependencies is not directly related to the number
of CIs; instead, it might be orders of more magnitude. If this environment is highly
meshed, the complexity increases in an exponential manner, which takes a lot of
processing time. Adding more CPUs does not reduce that time.

4.1.3 Database sizing considerations

To calculate the configuration management database (CMDB) size, use the
general rule: 2 MB per server equivalent, for example, the following numbers of
server equivalents work out to the following database sizes:

� 5 000 server equivalents: 10 GB
� 10 000 server equivalents: 20 GB

The following numbers were realized from an actual large-scale implementation:

Running weekly discoveries of about 2 500 server equivalents for 14 months uses
about 7 GB of space.

The reason that the planning information cannot be better qualified is that the
determining factor, beside the number of hosts and devices, is the number of
components that are discovered in the environment, the rate of change, and the
number of versions kept. These factors can vary tremendously from one
environment to another environment. In addition, the size of an individual
component varies as well. For example, how many Enterprise JavaBeans (EJBs)
are deployed in a WebSphere Application Server, or how many tables exist in a
database? Using Custom Server Templates and Computer System Templates to
collect and track files can also greatly influence the capacity requirements of the
Configuration Management Database (CMDB).

In an enterprise configuration, the TADDM enterprise domain database can
operate in the following two modes:

� Deep mode: This is the default mode. The TADDM enterprise domain
database synchronizes all of the information contained in the single domains.
Thus, when this information is retrieved in an enterprise environment, it is
retrieved completely from the TADDM domain databases. There is no runtime
access to the single domain to retrieve deep information when the TADDM
enterprise domain database operates by default in this mode.

The TADDM enterprise domain database operates by default in this mode,
because the $COLLATION_HOME/etc/domainquery file contains the text

 Chapter 4. Deployment and capacity planning 63

SYNC_ALL_ATTRS. When the domainquery file begins with SYNC_ALL_ATTRS, any
remaining content is ignored and deep synchronization is performed.

� Shallow mode: The TADDM enterprise domain database stores a small set of
top-level information contained in the TADDM domain databases. However,
the TADDM enterprise domain database can query the TADDM domain
database for more detailed information as needed. This query capability
reduces the amount of data that needs to be held at the TADDM enterprise
domain database, enabling it to hold more objects and process more
transactions than a TADDM domain database. The default top-level
information that is stored locally in the TADDM enterprise domain database is
specified in the $COLLATION_HOME/etc/domainquery.shallow file on the
TADDM enterprise domain server. You can customize this file.

You need to select either deep or shallow mode one time, which is prior to
performing any domain synchronizations. To switch from the deep mode to the
shallow mode, make a copy of the domainquery file, and rename the supplied
domainquery.shallow file to domainquery.

In deep or shallow mode, you can specify tables to be ignored from
synchronization in the $COLLATION_HOME/etc/sync/importsuppresslist file on
the TADDM enterprise server. In deep mode, you can suppress specific
attributes from being written to the TADDM enterprise domain database by
specifying those attributes in the following manner:
$COLLATION_HOME/etc/sync/importsuppresslist file:tablename:attr1,attr2.

4.2 Creating a deployment plan

Creating a deployment plan is essential to creating and installing a configuration
and tracking environment. This book describes all of the planning considerations
and provides scenarios for creating a comprehensive deployment plan. At a
minimum, you need to gather the following information before you install any
software:

� Base hardware and software requirements for TADDM Version 7.1

� Whether the computer systems in your distributed network can support this
new software, whether these systems can be upgraded to meet your
business needs, or whether you will need new systems

Note: Refer to 4.6.2, “Solution approach” on page 81 for a discussion of
server equivalents.

64 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� Which TADDM components to install on which computer systems in your
distributed network to support your business needs and whether they have
additional third-party software requirements

For each system where you plan to install components of TADDM, provide the
following information:

� Host name

� Operating system

� Available memory and available disk space

� Which components of IBM Tivoli Change and Configuration Management
Database TADDM to install

4.3 Planning your hardware and software

Table 4-1 summarizes the platforms that TADDM Version 7.1 supports. For each
platform, install the latest available service packs.

Table 4-1 Supported operating systems for TADDM V7.1 components

Operating system and supported
release

Support details

AIX 5.2 (Release previous to current
platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine (JVM).

AIX 5.3 (Current platform release) � Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

 Chapter 4. Deployment and capacity planning 65

Red Hat Enterprise Linux 4.0 x86
(Release previous to current platform
release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Red Hat Enterprise Linux 4.0 x86_64
(Release previous to current platform
release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

Red Hat Enterprise Linux 4.0 for
System z® (Release previous to
current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode only.
Both the TADDM Server and the anchor run in
a 64-bit Java Virtual Machine on this operating
system.

Red Hat Update 3 is also required.

Red Hat Enterprise Linux 5.0 x86
(Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

The installation program does not start in GUI
mode on Red Hat Enterprise Linux 5.0
systems unless you install the following library
file: libXp.so.6. The Red Hat Package
Manager (RPM) package
libXp-1.0.0-8.i386.rpm must be installed. This
package can be found on disk two of the Red
Hat Enterprise Linux 5.0 distribution media in
the Server directory.

Operating system and supported
release

Support details

66 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Red Hat Enterprise Linux 5.0 x86_64
(Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

The installation program does not start in GUI
mode on Red Hat Enterprise Linux 5.0
systems unless you install the following library
file: libXp.so.6. The RPM package
libXp-1.0.0-8.i386.rpm must be installed. This
package can be found on disk two of the Red
Hat Enterprise Linux 5.0 distribution media in
the Server directory.

Red Hat Enterprise Linux 5.0 for
System z (Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode only.
Both the TADDM Server and the anchor run in
a 64-bit Java Virtual Machine on this operating
system.

The installation program does not start in GUI
mode on Red Hat Enterprise Linux 5.0
systems unless you install the following library
file: libXp.so.6. The RPM package
libXp-1.0.0-8.i386.rpm must be installed. This
package can be found on disk two of the Red
Hat Enterprise Linux 5.0 distribution media in
the Server directory.

Operating system and supported
release

Support details

 Chapter 4. Deployment and capacity planning 67

Solaris 9 SPARC (Release previous
to current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, TADDM Server and anchor run in a
32-bit Java Virtual Machine.

Solaris 10 SPARC (Current platform
release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

SUSE Linux Enterprise Server 9.0
x86 (Release previous to current
platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

At the time of release, IBM Software support is
investigating intermittent problems with the
JVM and SUSE Linux Enterprise Server 9.0
x86. For production environments, use SUSE
10.

SUSE Linux Enterprise Server 9.0
x86_64 (Release previous to current
platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

At the time of release, IBM Software support is
investigating intermittent problems with the
JVM and SUSE Linux Enterprise Server 9.0
x86_64. For production environments, use
SUSE 10.

Operating system and supported
release

Support details

68 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

SUSE Linux Enterprise Server 9.0 for
System z (Release previous to current
platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

At the time of release, IBM Software support is
investigating intermittent problems with the
JVM and SUSE Linux Enterprise Server 9.0
for System z. For production environments,
use SUSE 10.

SUSE Patch Level 3 is also required.

SUSE Linux Enterprise Server 10.0
x86 (Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

SUSE Fix Pack 1 is also required.

SUSE Linux Enterprise Server 10.0
x86_64 (Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

SUSE Fix Pack 1 is also required.

Operating system and supported
release

Support details

 Chapter 4. Deployment and capacity planning 69

SUSE Linux Enterprise Server 10.0
for System z (Current platform
release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server

Support is provided for the hardware and the
operating system running in 64-bit mode only.
Both the TADDM Server and the anchor run in
a 64-bit Java Virtual Machine on this operating
system.

Microsoft Windows Server 2003
Datacenter Edition, Enterprise
Edition, and Standard Edition
(Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server
� Windows Gateway

Windows Server 2003 R2 is supported.

This environment requires Microsoft Service
Pack 2.

Microsoft Windows Server 2003
Datacenter x64 Edition, Enterprise
x64 Edition, and Standard x64 Edition
(Current platform release)

� Domain Manager
� Product Console
� Anchor
� TADDM Server
� Windows Gateway

Support is provided for the hardware and the
operating system running in 64-bit mode;
however, the TADDM Server and the anchor
run in a 32-bit Java Virtual Machine.

Windows Server 2003 R2 is supported.

This environment requires Microsoft Service
Pack 2.

Microsoft Windows XP Professional
(Release previous to current platform
release)

� Domain Manager
� Product Console

Windows Server 2003 DataCenter
(Current platform release)

� Domain Manager
� Product Console

Windows Server 2003 Standard
Edition (Current platform release)

� Domain Manager
� Product Console

Operating system and supported
release

Support details

70 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

All Windows gateways must be running either the Bitvise WinSSHD 4.06a or
later or Cygwin SSH. The TADDM Server communicates with the Windows
gateway using SSH, regardless of the platform that the server is using.

You must install the latest patches and updates from the operating system
vendor before installing a TADDM Server, anchor, or gateway component.
Systems without patches have problems running the latest Java 1.5 Java
Runtime Environments (JREs) that are included with TADDM.

For the targets of a discovery, not the servers, in many cases TADDM supports
operating systems and applications that are no longer supported by the vendor.
While every effort is made to fix issues encountered on these targets of a
discovery, you might have to reproduce the problem on a vendor-supported
operating system or application and engage the vendor support.

On supported AIX operating systems, you must have an unzip utility available in
the /usr/bin or /usr/local/bin directory for both the AIX TADDM Server and the AIX
anchor. If you did not install the unzip utility with the supported AIX operating
system, you must put an unzip utility into one of those directories before
beginning the installation.

To run a 32-bit Java GUI on 64-bit hardware, you need the following 32-bit
shared library files for the supported Linux operating systems:

� libdl.so.2
� libpthread.so.0
� libXmu.so.6
� libXt.so.6
� libX11.so.6
� libm.so.6
� libXtst.so.6
� libXp.so.6
� libc.so.6
� lib/ld.so.1
� libXext.so.6
� libSM.so.6
� libICE.so.6

Important TADDM Server, Windows OS, and personal firewall software
information: If you are installing the TADDM Server on a Windows operating
system, and if personal firewall software is installed, messages from the
firewall software are displayed during the TADDM installation process. When
the messages request that you grant access permission, you need to grant all
access. If you do not grant access, the TADDM Server does not start or run
properly.

 Chapter 4. Deployment and capacity planning 71

� libXau.so.6
� libXdmcp.so.6

4.3.1 Using Red Hat Enterprise Linux for your TADDM Server

SELinux must be disabled before installing TADDM, or your installation might
fail.

When you install Red Hat Enterprise Linux, SELinux is optionally enabled on the
operating system:

1. To disable SELinux, turn off SELinux enforcing. Complete the following steps:

a. Open the following file: /etc/sysconfig/selinux.

a. Find the following line: SELINUX=enforcing.

a. Change it to SELINUX=disabled.

2. Restart the server.

4.3.2 Hardware requirements

The following list provides the processor, memory, and disk space requirements
for a TADDM Server. The requirements are the same whether the machine is an
enterprise TADDM Server or a domain TADDM Server.

Each TADDM Server requires a machine with:

� 100 GB of available disk space
� 2-4 CPUs with a minimum process speed of 2 GHz
� 4-8 GB of memory
� 4-8 GB of swap space on the disk used by the operating system

You must install the database on another machine. For medium to large
environments, use more memory.

Note: Server hardware requirements are directly related to the number of CIs
that the domain is going to support.

72 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Database
Before you install the product on the server, you need to have either a local or
preferably remote database server installed. You can configure TADDM to use
the following external databases to store the information that is collected during
the discovery process:

� IBM DB2 Version 9.1 and Fix Pack 2 for AIX (64-bit), Solaris SPARC (64-bit),
Linux on System z (64-bit), Linux x86 (32-bit and 64-bit), and Windows (32-bit
and 64-bit) operating systems

� IBM DB2 Version 8.2 and Fix Pack 10 for AIX (32-bit and 64-bit), Solaris
SPARC (32-bit and 64-bit), Linux on System z (32-bit and 64-bit), Linux x86
(32-bit and 64-bit), and Windows (32-bit and 64-bit) operating systems

� Oracle 9i and 10g

The option of Oracle Real Application Clusters is not supported. You can install
IBM DB2 UDB ESE Version 8.2 with Fix Pack 10 from the product media.

If you use a Windows operating system, you can complete one of the following
options for the installation process:

� Manually install the DB2 server, and create the database.

� Install the DB2 server, and create the database as a part of the installation
process.

� Manually create the Oracle database users.

� Create the Oracle database users as a part of the installation process.

If you use a Linux for System z operating system, you must install the DB2
software and create the database, or create an Oracle user on a remote machine
before installing the TADDM Server.

Anchor server
Each Anchor server requires a machine with:

� Processor: Two-Core 2 Ghz minimum, Four-Core 4Ghz each are
recommended for large domains. Always choose fewer, more powerful
processors. For example, choose two 4 Ghz processors instead of eight 1
Ghz processors.

Note: This is the last release of Tivoli Application Dependency Discovery
Manager that supports the use of Oracle 9i as a TADDM Domain or Enterprise
database.

 Chapter 4. Deployment and capacity planning 73

� RAM: 2 GB minimum, 4 GB recommended. 2 GB Disk swap space must be
enabled.

� Disk: 2 GB available.

Windows gateway
Each Windows gateway requires a machine with:

� Processor: Two-Core 3 Ghz minimum, Four-Core 3 Ghz each is
recommended.

� RAM: 1 GB minimum, 2 GB recommended.

� Disk: Less than 5 MB is needed.

4.4 TADDM deployment checklist

Table 4-2 is a checklist for planning your TADDM deployment.

Table 4-2 TADDM deployment checklist

TADDM deployment checklist Planned/verified

TADDM components

TADDM Server
hardware/operating system: Refer to Table 4-1 on page 65

TADDM Service Account: Create a TADDM service account
(non-root) that TADDM will run as

TADDM Windows Discovery Gateway server:
� Winsshd SSH Server (4.06a or higher) or Cygwin Secure

Shell (SSH) must be installed.
Host lock-out feature on WinSSHD server disabled

� Test Windows Management Interface (WMI) access from
the Gateway Server for discovering targets:
Log in to the Gateway Server with the account that is set
up for the target hosts:
cd \windows\system32
cscript prnjobs.vbs -l -s ADONIS (where ADONIS is the
Windows target host).

The output looks similar to:
Number of print jobs enumerated 0
If it prints: “Unable to connect to WMI service Error
0x80070005 Access is denied” or something similar, the
account setup is not proper.

74 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

TADDM Database server:
� Tablespace size of at least 1 GB
� Account: Two database accounts with the following

privileges: alter, create, delete, drop, select, update,
index, and insert

� For Oracle DB:
A new Oracle instance
Create an Oracle user (collation_user), and grant connect
and resource roles to collation_user.

Anchor servers
� If you have Linux or UNIX Anchor servers, verify whether

you have the following parameter in the sshd.config file:
AllowTcpForwarding=yes

If you use SSH2, SSH2 adds four TcpForwarding options.
These options restrict forwarding for groups and users.
These options must be enabled or absent.

� The StackScan sensor uses Nmap to gather data about
the targets for credential-less discovery. Verify that you
have Nmap installed on your TADDM Server and all
anchor servers.

� The StackScan sensor requires sudo access control to
collect discovery information. For Windows operating
systems, sudo access control is not needed.

To configure sudo access, complete the following steps
for the TADDM Server and anchor hosts:

1. From a command prompt window, use the su command to
switch to root authority on the local host.

2. Type the visudo command.
3. Type the following line in the /usr/local/etc/sudoers or

/etc/sudoers file: <TADDM_USER>ALL=(ALL) NOPASSWD:ALL
<TADDM_USER> is the non-root user ID that is used by the
TADDM Server.

TADDM Web-based Client:
You need JRE 1.5.x

Have you verified host name resolution in all the servers where
TADDM components are installed?

Checklist for discovering targets

TADDM deployment checklist Planned/verified

 Chapter 4. Deployment and capacity planning 75

4.5 Planning worksheets

These tables list the settings that you need to know when installing TADDM.

The settings in Table 4-3 on page 77 are the basic settings for your TADDM
Server.

UNIX and Linux targets must have lsof installed:
� On Linux, lsof must be setuid root or sudo access as root

(NOPASSWD) must be granted.
� On Solaris, the user credentials given to the TADDM host

must be in the local sys group Solaris only.
� SUN scup package must be installed, which contains

/usr/ucb/ps
SSH access from the TADDM host must be enabled (if V2,
keys must be distributed prior to the start of the discovery).

Checklist for network devices

Do you have Network devices to be discovered? Do you have
the read-only community string?

If you need deep discovery, enable the password for Cisco
devices.

Users and roles

Have you planned for domain users and roles? If Enterprise
Configuration Management Database (eCMDB), create users
and roles at the eCMDB Domain Manager.

Versioning

Are you going to have multiple versions created? If yes, have
you planned how frequently the versions will be created?

Each version creates a replica of existing tables. Have you
planned for additional disk space for the TADDM Database
server for multiple versions?

eCMDB

Have you planned the number of Domain Managers and their
locations? Have you planned the discovery zones that each of
them will use?

TADDM deployment checklist Planned/verified

76 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 4-3 Setting for a typical installation

The settings in Table 4-4 are the port numbers and server details that are used
by the TADDM enterprise domain server.

Table 4-4 Additional settings for a custom installation

Setting Default Your value

Install directory for TADDM � For Linux, Solaris, AIX,
and Linux on System z
operating systems,
/opt/IBM/cmdb

� For Windows operating
systems, c:\ibm\cmdb

Non-root user ID cmdbusr1

DB2 instance user ID db2inst1

DB2 instance password N/A

DB2 database server port 50000

Archive DB2 user ID (must be in
the DB2 archuser Administrators
group)

archuser

Archive DB2 user ID password N/A

Setting Default Your value

Server TADDM Server

Security manager port for interactions with the
TADDM Enterprise Domain Server

9540

Topology Manager port for interactions with the
TADDM Enterprise Domain Server

9550

Application programming interface (API) server
port for interactions with the TADDM Enterprise
Domain Server

9560

Change manager port for interactions with the
TADDM Enterprise Domain Server

9570

Report server port for interactions with the
TADDM Enterprise Domain Server

9580

IBM Tivoli Change and Configuration
Management Database (CCMDB) server host
name (for launch-in-context function)

 Chapter 4. Deployment and capacity planning 77

In general, you only change the settings in Table 4-5 if you have already
assigned these ports or have standards about port usage. You will need to know
these port numbers when you install IBM Tivoli CCMDB.

Table 4-5 Additional port values

IBM Tivoli CCMDB server port (for
launch-in-context function)

9530

Non-root user ID cmdbusr1

Remote Method Invocation (RMI) server host
name

default

Discovery manager server mode (local or
distributed)

Local

Start RMI server after restart (check box) Yes

Start RMI server after installation (check box) Yes

Database type DB2

Database server host name

Database server port 50000

Database name cmdb

Node name for DB2 client

Create database during installation (check box) Yes

Setting Default Your
Value

Web server port 9430

Secure Sockets Layer (SSL)
Web server port

9431

GUI server port 9435

GUI system SSL port 9434

Java Naming and Directory Interface (JNDI) port 9432

RMI port 9433

Topology Manager port 5636

Topology Builder port 5637

Setting Default Your value

78 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

If you use Oracle as the database for your CMDB, you will need the information
in Table 4-6.

Table 4-6 Settings for Oracle database

Table 4-7 contains information about ports that are used by the PingSensor and
PortSensor.

Table 4-7 Ports used by the PingSensor and PortSensor to make connections

RMID port 1098

Setting Default Your value

Oracle database system ID orcl

Oracle host name

Oracle database port 1521

Oracle user ID cmdbuser

Oracle password

Oracle additional (archive) user ID archuser

Oracle additional (archive) password

Oracle system user ID sys

Oracle system password

Oracle connect as role sysdba

Oracle home directory

Port name Port number

CiscoWorks 1741

DNS 53

LDAP 389

SSH 22

WBEM 5988

WMI 135

Setting Default Your
Value

 Chapter 4. Deployment and capacity planning 79

4.6 Deployment planning case study

In this section, we provide a sample scenario that can help you plan your
TADDM deployment.

For more information about TADDM deployment planning, refer to the TADDM
Best Practices for Deployment Planning document at:

http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Practic
es+for+Deployment+Planning#BestPracticesforDeploymentPlanning-

4.6.1 Client scenario

Table 4-8 on page 81 provides the IT infrastructure for client ABC.

As shown in Table 4-8 on page 81, client ABC has UNIX (102) and Windows
(222) servers. These servers are distributed across 16 locations.

Client ABC has a data center that has a total of 482 additional servers. The data
center runs applications and databases, which are described in Table 4-8 on
page 81. These database and application servers are part of the 482 servers.

The datacenter has four firewall zones and one DMZ for Web servers.

80 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Practices+for+Deployment+Planning#BestPracticesforDeploymentPlanning-

Table 4-8 Client ABC IT Infrastructure

The client plans to deploy the IBM Service Management solution; therefore, you
must design the TADDM deployment as Phase I.

4.6.2 Solution approach

Before we derive the solution for the client scenario, we show you how to
calculate the approximate number of CIs and the number of Domain Managers
required for a solution.

Because enterprise data center environments vary dramatically, IBM defines the
concept of a server equivalent (SE) to normalize and present a standard set of
performance and scale metrics. A representative unit of IT infrastructure, a
server equivalent, is defined as a computer system with standard configurations
for the operating system, network interfaces, and storage interfaces and also
accounts for installed software, such as a database (DB2), a Web server
(Apache or IPlanet), or an application server (WebSphere or WebLogic). An SE
also accounts for network, storage, and other sub-systems that provide services

Servers Quantity

Total number of UNIX/Linux servers 102

AIX 92

Linux 10

Total number of Windows servers 222

Windows servers 222

Total number of discovery targets in data
center

482

AIX/Linux 321

Intel® Windows 161

Total number of database servers 92

DB2 10 (5 databases per server)

Oracle 82 (8 databases per server)

Total number of application servers 117

Web server Instances (Apache) 50

Web Application Server (WebSphere) 67 (3 instances per server)

 Chapter 4. Deployment and capacity planning 81

to the optimal functioning of the server. IBM hard-codes 200 CIs to a single SE.
As defined by Information Technology Infrastructure Library (ITIL), a
Configuration Item (CI) is any component that is under the control of
Configuration Management, and therefore subject to formal Change Control.
Each CI in the CMDB has a persistent object and change history associated with
it. Examples of a CI are a computer system, operating system, L2 interface, and
database buffer pool size.

Configuration item counts for discovery of individual targets
It is difficult to provide a standard number for the number of CIs in an SE. The
actual number of CIs in an SE varies depending on the complexity of the
infrastructure; for example, a complex database server with a large number of
instances, databases, and tablespaces has a larger number of CIs per SE, and
the number of CIs affects the overall performance. Table 4-9 summarizes the CI
counts for a few targets that we tested in our lab.

Table 4-9 Sample data showing the number of CIs for an Item

Description of item CI Comments

Overhead 504 Overhead discovery. The server starts with
504 CIs before discovery

Linux System OS 40 Red Hat 4.0 AS U4 server with no applications

Linux and Java 73 Red Hat ES 3.0 with Java

DB2 286 DB2 8.2 and Fix Pack 10 application CI count
(excluding OS)

Cisco switch 234 Average for Cisco 3750 and 2950 switches

SUN System and Java 87 SUN server with Java and default OS options

Oracle 235 Net cost for Oracle database

Sybase 35 Net cost for Sybase

AIX System 127 Net cost for AIX system without applications

Windows and Java 421 Net cost for Windows with Java

Apache 59 Net cost for Apache Web server (AIX system)

WebSphere Application
Server 6.0

349 Net cost for WebSphere Application
Server 6.0

Note: Net cost means just the standard base installation with no additional
database or application instance.

82 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

We performed additional tests for a few other targets, such as DB2, Oracle, and
the WebSphere Application Server. Table 4-10 contains the results of the
additional tests.

Table 4-10 Additional CIs for each database or application server instance

The tests provide an approximate estimate of how large your environment can
be. We observed an average of 200 CIs per SE. Because each environment is
unique and complex, you need to consider all of the factors during your CI
calculation.

Supporting a large scale IT environment
The distributed architecture of TADDM is designed to scale to millions of CIs. In
particular, with a scalable relational data store, such as DB2, Tivoli TADDM can
accommodate a large number of server equivalents. The major things to
consider are:

� Discovery techniques (Native Discovery, Identification Markup Language
(IDML) Book Load, or API)

� Data loading time

� Number of servers

� Complexity of the servers

IBM performed several benchmarks to profile the discovery speeds and
integration throughput rates.

Platform Number of CIs introduced by additional database
or application server instance

DB2 134

Oracle 147

WebSphere 350

 Chapter 4. Deployment and capacity planning 83

Table 4-11 Performance benchmark using various discovery techniques

1. Numbers are based upon lab machine discovery.
2. CIs with computer systems and no array object

Post-processing
After the data loading (discovery, bulkload, or API) is complete, the following
post-processing tasks are initiated:

� Topology Builder

It is invoked to compute additional embedded connections between
discovered objects to complete the application topology. Additionally,
Topology Builder also performs additional data reconciliation to reconcile data
that is obtained from multiple data sources.

� View Manager

View Manager builds the in-memory data structures that are required for the
GUI to render the topology efficiently.

� Change Manager

Change Manager generates change events and updates the change history
records.

� State Manager

State Manager also builds the in-memory topology cache for propagating
changes in the topology graph.

Discovery
technique

Rate of discovery Comments

Native discovery
(Sensor-based
discovery)

50 000 CIs in one hour
(250 SEs/hour)1

Provides deep auto-discovery
capability. Can parallel multiple
discoveries by adding multiple
domains to achieve near linear
scaling

StackScanSens
or (Shallow
discovery)

341 computer systems in
one minute, 47 seconds.
(1 484 computer
systems/hour)1

Provides shallow, credential-less
discovery

IDML Book
Loader

60 840 CIs in one hour
(300 SEs/hour)

Useful for integrating products that
produce IDML books

API-based
loading

120 000 CIs in one hour
(600 SEs/hour)2

Requires development using the
APIs and can provide a high rate of
data

84 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

The average post-processing time per CI is about 20 ms, and the average
post-processing time for a server with 200 CIs is four seconds. So, the discovery
time needs to take into consideration the time taken to discover (run the sensors)
plus the post-processing time.

The following formula can help you to arrive at an estimation for the number of
TADDM Server domains for your environment.

Domain_No: Number of TADDM Domains

Discovery_Rate: Rate of discovery (assumed at 50 000 CIs/hour. Refer to
Table 4-11 on page 84.)

Approximate Total CI_No: Approximate number of CIs

Duration: Desired amount of time within which discovery must complete (hours)

Domain_No = [Approximate Total CI_No/Discovery_Rate/Duration]

If the Domain_No is greater than one, add an additional eCMDB server to
support data aggregation across the TADDM Servers.

4.6.3 Client solution

Let us now derive the solution for our client scenario from 4.6.1, “Client scenario”
on page 80, using the formula from the previous section.

As depicted in Table 4-8 on page 81, the client has a primary data center that
has four firewall zones and one DMZ to make a total of five firewall zones.

Client ABC has 324 servers (UNIX + Windows) distributed across 16 different
locations. However, there are no firewalls between those 16 locations.

We assume that there are Windows machines across each firewall. Hence, we
need five anchors and gateways.

As part of the infrastructure details, there is no information currently provided to
us about the number of network devices. In our case, we assume 150 Cisco
network devices.

Also, we assume that the discovery completes in 12 hours.

As stated earlier:

Domain_No = [Approximate CI_No/Discovery_Rate/Duration]

 Chapter 4. Deployment and capacity planning 85

Number of CI calculations
We need to calculate the approximate total number of CIs first for our client
environment.

The number of CIs for distributed servers across 16 locations is:

� AIX servers = 92 x 127 = 11 684
� Linux servers = 10 x 73 = 730
� Windows servers = 222 x 421 = 93 462

CIs for Datacenter servers:

� AIX/Linux = 321 x 127 = 40 767 (because we do not have a breakdown of the
AIX/Linux, we take the CI calculation of AIX on the higher side)

� Windows servers = 161 x 421 = 67 781

For the CIs for the database servers, we must take the base CIs for a standard
database installation, plus the CIs that get added when you create each
additional database. According to Table 4-8 on page 81, we have:

� DB2: 10 (Five databases per server)
� Oracle: 82 (Eight databases per server)

Therefore:

� DB2 = 10 x 286 + 50 x 134 = 9 560 (50 = 10 servers each having five
databases)

� Oracle = 82 x 235 + 656 x 147 = 115 702 (656 = 82 servers each having eight
databases)

CIs for Web servers: Apache = 50 x 59 = 2 950

CIs for WebSphere Application Servers: WebSphere = 67 x 350 x 3 = 70 350

CIs for network devices: We have assumed 150 Cisco devices, Cisco = 150 x
234 = 35 100

The total number of CIs = 11 684 +730 + 93 462 + 40 767 + 67 781 + 9 560 +
115 702 + 2 950 + 70 350 + 35 100 = 448 086

Note: Refer to Table 4-8 on page 81, Table 4-9 on page 82, and Table 4-10 on
page 83 to calculate the number of CIs for each SE type.

The number of CIs per SE type = Number of SE (Table 4-8) x Number of CIs
for that SE type (Table 4-9).

86 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Number of domain calculations
Now, we calculate the number of domains that we need.

Domain_No = [Approximate Total CI_No/Discovery_Rate/Duration]

= 448 086/50 000/12 hours

=0.75

= 1

Hence, we need only one Domain Manager for client ABC.

TADDM Server sizing calculation
Now, we derive the server sizing for our TADDM Server.

If you refer to 4.1.1, “TADDM Server sizing” on page 62, you need to plan for a
TADDM Server with at least 4 CPU/4 GB RAM and a database server of at least
2 CPU/4 GB RAM. The database server disk needs to be a minimum of:

2 MB x 1457 = Approximately 3 GB

Now, 3 GB is a minimum database size. If you plan to perform versioning in your
environment, you need equal database capacity for each version. So, if you plan
one version every quarter, you need an additional 12 GB, which makes the total
15 GB. Note that the TADDM Database server must always have at least two
physical disk drives (more recommended) as a storage array for high disk I/O
throughput.

4.6.4 Additional sizing examples

Example 4-1, Example 4-2 on page 88, and Example 4-3 on page 88 are
additional deployment examples.

Example 4-1 SmallManufacturer Inc

Example SmallManufacturer Inc:
Discovery Techniques – Native Discovery
Rate of Discovery: 50,000 CIs per hour
Approx. Number of CIs: 1000 (SEs) x 200 CIs per SE
Duration: 8 hours
Number of Domains = [200000/50000/8] = [0.5] = 1
Number of CCMDB Servers = 1

 Chapter 4. Deployment and capacity planning 87

Example 4-2 MediumInsurer Inc

Example MediumInsurer Inc:
Discovery Techniques – Native Discovery
Rate of Discovery: 50,000 CIs per hour
Approx. Number of CIs: 3500 (SEs) x 200 CIs per SE
Duration: 24 hours
Number of Domains = [700000/50000/24] = [0.58] = 1
Number of CCMDB Servers = 1

Example 4-3 LargeInsurer Inc

Example LargeInsurer Inc:
Discovery Techniques – Native Discovery
Rate of Discovery: 50,000 CIs per hour
Approx. Number of CIs: 12000 (SEs) * 200 CIs per SE
Duration: 24 hours
Number of Domains = [2400000/50000/24] = [2.00] = 2
Number of CCMDB Servers = 3 (with additional eCMDB server)

You can use the formulas in these examples for the initial deployment planning.
However, in large client environments, because the complexity of servers can
vary between environments, the process of fine tuning the TADDM deployment
is iterative. You need to further verify and refine the deployment using the
following mechanisms.

Check the total number of CIs in your environment after the initial discovery. You
can obtain the CI number with the following commands (if using DB2):

� DB2 connect to <CMDB_DB_Name>
� DB2 select count (*) from PERSOBJ

Check the total number of servers in your environment. The server number can
be obtained with the following command (if using DB2):

DB2 select count(distinct(contextip_x)) from COMPSYS

Divide the total number of CIs by the number of servers. If the result is larger
than 200 (as documented in our benchmark results), move several servers to
their own domain to help achieve the desired duration.

88 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 5. Tivoli Application
Dependency Discovery
Manager installation steps

In this chapter, we provide information about installing Tivoli Application
Development Discovery Manager (TADDM). Specifically, we provide the steps
that we took in successfully installing TADDM V7.1 in our lab environment.

In this chapter, we discuss:

� “Our lab environment” on page 90
� “Installing DB2” on page 92
� “Installing a TADDM Domain Server on Windows” on page 108
� “Installing a TADDM Domain Server on Linux” on page 126
� “Installing a TADDM enterprise server on AIX” on page 144
� “Configuring LDAP” on page 172
� “Deploying anchors and gateways” on page 174
� “Setting up Windows gateways” on page 182
� “Troubleshooting” on page 193

5

© Copyright IBM Corp. 2008. All rights reserved. 89

5.1 Our lab environment

We attempted to make our lab environment as realistic as possible. We had two
ITSO labs that were separated by firewalls. The first ITSO lab was located in
Austin, TX, which is where the TADDM Servers were located. We had two
TADDM Domain Servers and one TADDM enterprise server. For variety, each of
the TADDM Servers ran a different operating system (OS). The first TADDDM
domain server, host name Waco, was running on Linux. The second TADDM
Domain Server, host name Southend, was running on Windows Server 2003. The
TADDM enterprise server, host name Paris, was running on AIX 5.3. All three
databases were DB2, and all three databases were located on a single AIX
server, host name Copenhagen. In addition to the TADDM Servers, we also had a
TADDM Windows gateway, host name Newyork, located in the Austin lab. There
were numerous Windows and UNIX servers to discover in the Austin lab.

The other ITSO lab was located in San Jose, CA. There were two firewalls
separating the two ITSO labs. In the San Jose lab, we had a TADDM Windows
Gateway, host name Wilas, and a TADDM Anchor server, host name Zaire. In
addition to these servers, there were other Windows and UNIX servers to be
discovered.

Figure 5-1 on page 91 illustrates our lab environment.

90 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-1 Lab environment

The TADDM installation wizard supports several installation scenarios, including:

� Simple installation with the installation of a DB2 database. This scenario
installs and configures a local DB2 database as part of the TADDM
installation.

� Simple installation without the installation of a DB2 database. This scenario is
for the case where you already have your local DB2 database installed.

� Advanced installation with a remote DB2 database. This scenario requires
you to install your DB2 database on a remote server prior to the installation of
TADDM.

� Advanced installation with a remote Oracle database. This scenario requires
you to install your Oracle database on a remote server prior to the installation
of TADDM.

The best practice recommendation for a production environment is for the
database to exist on a remote server.

For our implementation, we chose the third option in the previous list of options,
which is the advanced installation with a remote DB2 database. This scenario

Wisla
Windows Gateway

9.43.86.86

Zaire
Germany
Anchor

9.43.86.45

 Windows RedHat AIX
 2003 4.0 5.3

San Jose Lab

Newyork
Windows
Gateway
9.3.5.20

Windows
2003

AIX
5.3

RedHat
4.0

Suse
9.0

HP
UX II

Paris
ECMDB
AIX 5.3
9.3.5.45

Southend
TADDM
Windows

2003
9.3.5.131

Waco
TADDM

RedHat 4.0
9.3.5.51

Austin ITSO Lab

Copenhagen
Database

RedHat 4.0
9.3.5.46

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 91

requires you to install your DB2 database on a remote server prior to the
installation of TADDM. We also chose to place all three TADDM Databases on a
single AIX server.

5.2 Installing DB2

For our implementation, we chose to use DB2 for the TADDM Databases. We
also chose to install all three databases on a single AIX server.

Here is a high-level overview of the steps involved in creating the TADDM
Databases:

1. Install DB2 Enterprise Server, which creates the DB2 Administration Server
(DAS). We also installed the DB2 fix pack.

2. Create the DB2 database users.

3. Create the DB2 instances. We created three DB2 instances: one DB2
instance for each of the two TADDM Domain Servers and one DB2 instance
for the TADDM enterprise server.

4. Run the make_db2_db script to create the new configuration management
database (CMDB) for each DB2 instance.

5.2.1 Install DB2 Enterprise Server

To install DB2 on the AIX operating system, we completed the following steps:

1. Obtain the DB2 installation media and copy it to the server where DB2 will be
installed. The DB2 install image ships on disk 3 of the TADDM AIX installation
media. We copied this to our AIX server, Copenhagen, and untarred the file
into the directory, /opt/IBM/images/TADDM71/DB2/linux/DB2-ESE_9.1

2. We logged on to Copenhagen as the root user and changed the directory to
the directory where the DB2 install image is located.

The db2setup command displays the IBM DB2 Setup launchpad panel, which
is shown in Figure 5-2 on page 93.

Note: Development recommends that you place the database on a remote
server for a production environment. The reason for this recommendation is
that loads on the TADDM Server and database server are so high that a single
machine cannot handle it.

92 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-2 DB2 Installation Welcome panel

3. Select Install a Product from the left pane. The panel shown in Figure 5-3 on
page 94 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 93

Figure 5-3 Install a Product panel

4. Click Install New, and the Welcome to the DB2 Setup wizard panel, which is
shown in Figure 5-4 on page 95, is displayed.

94 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-4 Welcome to the DB2 Setup wizard panel

5. The DB2 Setup wizard now leads you through the installation process. Notice
the list of 14 installation steps on the left side of the wizard panel. As the
setup wizard leads you through the installation of DB2, this list reminds you
where you are in the installation process.

Click Next and the Software License Agreement panel, which is shown in
Figure 5-5 on page 96 appears.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 95

Figure 5-5 Software License Agreement

6. Read through the licensing agreement. If you agree with the terms, click
Accept and then click Next. The Select the installation type panel, which is
shown in Figure 5-6 on page 97, appears.

96 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-6 Select the Installation type panel

7. We selected Typical: 460 - 560 MB and then clicked Next. The panel, which
is shown in Figure 5-7 on page 98, appears.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 97

Figure 5-7 Select installation, response file creation, or both panel

8. We selected Install DB2 Enterprise Server Edition on this computer and
clicked Next. The panel, which is shown in Figure 5-8 on page 99, appears.

98 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-8 Select the installation directory panel

9. Enter the directory where you want to install DB2. We accepted the default
value, /opt/ibm/db2/V9.1. Clicking Next displayed the panel, which is shown
in Figure 5-9 on page 100.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 99

Figure 5-9 Set user information for the DB2 Administrator Server

10.On this panel, enter the information for the DAS user information. We
accepted the default values and entered a password for the user. Clicking
Next displays the panel that is shown in Figure 5-10 on page 101.

100 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-10 Set up a DB2 instance panel

11.This panel lets you create a DB2 instance. In DB2, an instance is an
independent environment where database objects can be created and
applications can be run against them. We are going to create our DB2
instance ourselves, so we selected Do not create a DB2 instance. Clicking
Next displays the panel that is shown in Figure 5-11 on page 102.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 101

Figure 5-11 Set up notifications panel

12.We selected Do not set up your DB2 server to send notifications at this
time. Clicking Next displays the panel that is shown in Figure 5-12 on
page 103.

102 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-12 Start copying files panel

13.We reviewed the current settings and were satisfied with the settings. When
we clicked Next, the installation wizard began copying files.

A progress panel, which is similar to Figure 5-13 on page 104, appears while
the files are copied.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 103

Figure 5-13 Installation progress panel

14.The panel that is shown in Figure 5-14 on page 105 is displayed when all of
the files have been copied and DB2 Enterprise Server is successfully
installed.

104 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-14 Setup has completed successfully panel

15.Before creating the DB2 instances, we installed the DB2 fix pack. Type the
command ./installFixPack.

We were prompted for the full path name of the DB2 installation directory,
which is shown in Figure 5-15 on page 106.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 105

Figure 5-15 Install DB2 fix pack panel

5.2.2 Create DB2 database users

Now that we have installed DB2 Enterprise Server, we need to create the
database instance. However, we first created six user accounts before we
created the database instance. These accounts, which are also known as the
DB2 user and the DB2 archuser, are the primary and secondary users for the
three database instances, as shown in Table 5-1 on page 107.

106 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 5-1 DB2 database users

5.2.3 Create the DB2 instances

Next, we created the three DB2 instances. We changed the directory and
created the instances:

cd /opt/ibm/db2/V9.1/instance
./db2icrt -a SERVER -p 50010 -s ese -u taddmlin taddmlin
./db2icrt -a SERVER -p 50020 -s ese -u taddmwin taddmwin
./db2icrt -a SERVER -p 50030 -s ese -u ecmdb ecmdb

Database users’ home directories are where the database is stored, which
means that the home directories must rely on a multi-disk partition for high disk
I/O throughput.

5.2.4 Run the make_db2_db.sh script

The script named make_db2_db.sh creates the initial cmdb database. This script
must be run for each of the three DB2 instances that were just created.

To run the make_db2_db.sh script, first copy the script to the home directory of
the instance owner for taddmlin, taddmwin, and ecmdb.

Then, log on (or su) as the instance owner, go to the home directory for that user,
and run the make_db2_db.sh script with the following command:

./make_db2_db.sh cmdb

TADDM
environment
(host name)

Primary/
DB2 user

Secondary/
DB2 Archuser

DB2 instance
name

TADDM
domain
(Southend)

taddmwin archwin taddmwin

TADDM
domain
(Waco)

taddmlin archlin taddmwin

TADDM
enterprise
(Paris)

ecmdb archecmdb ecmdb

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 107

5.3 Installing a TADDM Domain Server on Windows

Perform the following steps to install a TADDM Domain Server on Windows.

5.3.1 Install TADDM 7.1

To complete the installation of TADDM with a remote database, complete the
following steps:

1. Log on on to the Windows system with a user account that has Administrator
authority.

2. Locate the installation media and copy it to the Windows server. We copied
the installation media to the C:\code\TADDM_V710_Windows\TADDM
directory. Go to the directory where you placed the installation media and run
the setupWin32.exe file (Figure 5-16).

Figure 5-16 The setupWin32.exe command

108 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Issuing the setupWin32.exe command, or double-clicking the command as we
did, displays the InstallShield Wizard Welcome panel, which is shown in
Figure 5-17.

Figure 5-17 InstallShield Welcome panel

3. Click Next, and the International Program License Agreement panel, as
shown in Figure 5-18 on page 110, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 109

Figure 5-18 License Agreement

4. Read the licensing terms. If you agree to the licensing terms, click the I
accept both the IBM and the non-IBM terms. You must accept the terms of
the licensing agreement to continue the installation. Click Next, and the panel
that is shown in Figure 5-19 on page 111 is displayed.

110 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-19 Installation directory

5. Enter the name of the directory where you want to install TADDM. Click Next,
and the panel that is shown in Figure 5-20 on page 112 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 111

Figure 5-20 Defining a TADDM user

6. Enter the user that will run the TADDM Server. This user must have
Administrator authority. If this user does not currently exist, you can have the
InstallShield Wizard create the user account for you by checking Create user
ID if it does not exist. Enter and confirm the password for the user, and click
Next. The Choose the installation type panel that is shown in Figure 5-21 on
page 113 appears.

112 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-21 Choose the installation type

7. Choose the installation type: simple or advanced. A simple installation uses
default values for a local DB2 database. We do not recommend using a
simple installation for production environments.

We needed to use the advanced installation type, because we planned to use
a remote database. Select Advanced - Install the server with options to
change default values. Recommended for production environment. Click
Next. The Select one of the following server types panel that is shown in
Figure 5-22 on page 114 appears.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 113

Figure 5-22 Select the server type

8. Select the server type for the TADDM Server that you are installing.

We installed a TADDM domain, so we selected Domain Manager (CMDB)
server. In our case, this domain will be a leaf node of an enterprise domain
manager; however, we chose not to select the check box signifying that this
server will be a leaf server of an ECMDB server.

Clicking Next displays the panel that is shown in Figure 5-23 on page 115.

114 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-23 TADDM Server port information

9. Review the default port information and change any values that need to be
changed. We accepted all of the default port values.

Click Next. The panel, which is shown in Figure 5-24 on page 116, is used to
gather information about additional ports that will be used only for TADDM
domains that are attached to a TADDM enterprise server.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 115

Figure 5-24 Additional server ports when running in an enterprise environment

10.Review the default port information and change any ports that need to be
changed. We accepted all of the default ports.

Clicking Next displays the panel that is shown in Figure 5-25 on page 117.

116 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-25 Specifying Remote Method invocation (RMI) information

11.You must enter several types of information on this panel. First, enter the host
name for the RMI server. The default value is default. Use the default value if
the RMI server resides on the same system as the Change and Configuration
Management Database (CCMDB). If not, enter the IP address (not the host
name) of the RMI server.

Next, select the platform binaries that you want to install. These binaries will
be copied to Windows gateways and anchor servers. If you know the OSs on
which those gateways and anchors will run, choose only the binaries for those
OS platforms. If you are unsure of the OSs on which the gateways and
anchors will run, select all of the platforms.

To start this TADDM Server when the system is started, select Start the
server at system boot.

To start the server after the installation of TADDM is complete, select Start
the server after install.

Click Next, and the optional CCMDB host name and port panel, which is
shown in Figure 5-26 on page 118, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 117

Figure 5-26 Optional CCMDB host name and port

12.This panel asks for the host name and port number of the Change and
Configuration Management Database (CCMDB). We left this panel blank,
because our implementation did not include a CCMDB.

Click Next, and the Select the database type panel, which is shown in
Figure 5-27 on page 119, is displayed.

118 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-27 Select the database type

13.Select the type of database for your TADDM Database. We are using DB2, so
we selected DB2.

We chose not to set up the WebSphere Federation Server; therefore, we did
not check the Setup WebSphere Federation Server check box.

Click Next, and the panel shown in Figure 5-28 on page 120 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 119

Figure 5-28 Database configuration information

14.This panel is asking for configuration information about the database. We
created our database prior to the installing TADDM. Enter the database
information here.

Click Next, and the Select the User Registry Option panel, which is shown in
Figure 5-29 on page 121, is displayed.

120 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-29 Select the user registry option

15.Select the option for the user registry that will be used with TADDM.

For our implementation, we use the file-based user registry at the domain
level, but we will use Lightweight Directory Access Protocol (LDAP) at the
enterprise level. For normal operations, the domains are connected to the
enterprise, and user authentication is done through LDAP. If the connection
to the enterprise is down for any reason, user authentication is done through
the file-based user registry. Because this is a domain server that we are
installing, we selected File Based User Registry.

Click Next, and the summary panel, which is shown in Figure 5-30 on
page 122, appears.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 121

Figure 5-30 Summary information

16.Review the summary information, and if the information is correct, click Next
to begin the installation.

When the installation completes, the panel that is shown in Figure 5-31 on
page 123 is displayed.

122 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-31 Installation completion

17.Review the installation summary information, and click Finish. The
installation of the TADDM Domain Server on Windows is now complete.

18.Before proceeding, we recommend that you verify that all of the TADDM
services are running and that you can log on to the Product Console:

a. To verify that all of the TADDM services are running, log on to the TADDM
Server and issue the following command:

%COLLATION_HOME%\bin\control status

Figure 5-32 on page 124 shows the command and expected output.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 123

Figure 5-32 The control status command and output

b. Verify that the Product Console will come up sucessfully by bringing up
your browser and entering the URL with the host name of the Windows
server where TADDM was installed and port number 9430. For example:

http://southend:9430

The Tivoli Application Dependency Discovery Manager page, similar to
Figure 5-33 on page 125, is displayed.

The default user name and password combination is administrator for
the user name and collation for the password.

124 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-33 Tivoli Application Dependency Discovery Manager page

Notice that the TADDM components and their associated status are
displayed in the lower left corner of the panel. Clicking Refresh will refresh
the status. All of the statuses need to be green.

Click Start Product Console, and when prompted, enter a valid user
name and password. The Product Console panel, which is similar to
Figure 5-34 on page 126, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 125

Figure 5-34 Product Console

5.3.2 Install interim fix 0007

At the time of writing this book, interim fix 0007 (IF0007) was the latest interim fix
available for TADDM 7.1. To apply IF0007, obtain the image from the IBM
support site and load it onto the Windows server. Log on to the Windows server
with a user ID that can create and write access %TADDM_HOME%, go to the
directory where the IF0007 code has been copied, and type the command along
with the directory where TADDM 7.1 is installed. For example:

C:\code\7.1.0.0 TIV IF0007\taddm_IF>installIF.bat C:\IBM\cmdb

5.4 Installing a TADDM Domain Server on Linux

We performed the following steps to install a TADDM Domain Server on Linux.

126 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

5.4.1 Install TADDM 7.1

To complete the installation of TADDM with a remote database, complete the
following steps:

1. Log on to the Linux system as the root user.

2. Locate the installation media and copy it to the Linux system. We copied the
installation media to the /root/code/TADDM_V710/TADDM directory.

3. Go to the directory where you copied the installation media and run the
setupLinux.bin command, for example:

[root@waco]# . setupLinux.bin

Issuing the setupLinux.bin command displays the InstallShield Wizard
Welcome panel, which is shown in Figure 5-35.

Figure 5-35 InstallShield Wizard Welcome panel

4. Click Next, and the International Program License Agreement panel, which is
shown in Figure 5-36 on page 128, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 127

Figure 5-36 License Agreement

5. Read the licensing terms, and if you agree to the licensing terms, select I
accept both the IBM and the non-IBM terms. You must accept the terms of
the licensing agreement in order to continue the installation. Click Next and
the panel that is shown in Figure 5-37 on page 129 is displayed.

128 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-37 Installation directory

6. Enter the name of the directory where you want TADDM to be installed. Click
Next, and the panel shown in Figure 5-38 on page 130 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 129

Figure 5-38 Defining a TADDM user

7. Enter the user that you want to start the TADDM Server process. This user
must be a non-root user. If this user does not currently exist, you can have the
InstallShield Wizard create the user account for you by checking “Create user
ID if it does not exist”. Click Next. The Choose the installation type panel,
which is shown in Figure 5-39 on page 131, is displayed.

130 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-39 Choose the installation type

8. Choose the installation type: simple or advanced. A simple installation uses
default values for a local DB2 database. We do not recommend that you use
a simple installation for production environments.

We need to use the advanced installation type, because we plan to use a
remote database. Select Advanced - Install the server with options to
change default values. Recommended for production environment, and
click Next. The Select the server type panel that is shown in Figure 5-40 on
page 132 appears.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 131

Figure 5-40 Select the server type

9. Select the server type for the TADDM Server that is being installed.

We were installing a TADDM domain, so we selected Domain Manager
(CMDB) server. This domain will be a leaf node of a enterprise domain
manager; however, we chose not to select the check box.

Clicking Next will display the panel that is shown in Figure 5-41 on page 133.

132 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-41 TADDM Server port information

10.Review the default port information and change any port numbers that need
to be changed. We accepted all of the default port values.

Click Next. The panel that is shown in Figure 5-42 on page 134 is displayed
to gather information about additional ports that are used only for TADDM
domains that will be attached to a TADDM enterprise server.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 133

Figure 5-42 Additional server ports when running in an enterprise environment

11.Review the default port information and change any ports that need to be
changed. We accepted all the default ports.

Clicking Next displays the panel that is shown in Figure 5-43 on page 135.

134 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-43 Specifying RMI information

12.There are a couple pieces of information that you must enter on this panel.
You must enter the host name for the RMI server. The default value is
default. Use the default value if the RMI server resides on the same system
as the CCMDB; if not, enter the IP address (not the host name) of the RMI
server.

Next, select the platform binaries that you want installed. These binaries will
be copied to Windows gateways and anchor servers. If you know the
operating systems (OSs) on which those gateways and anchors will run,
choose only the binaries for those platforms. However, if you are unsure
about the OSs, select all of the platforms.

To start this TADDM Server when the system is started, select Start the
server at system boot.

To start the server after the installation of TADDM is complete, select Start
the server after install.

Click Next, and the optional CCMDB host name and port panel that is shown
in Figure 5-44 on page 136 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 135

Figure 5-44 Optional CCMDB host name and port

13.This panel asks for the host name and port number of the Change and
Configuration Management Database (CCMDB). We left this panel blank,
because our implementation did not include a CCMDB .

Click Next, and the Select the database type panel, which is shown in
Figure 5-45 on page 137, is displayed.

136 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-45 Select the database type

14.Select the database type for your TADDM Database. We used DB2;
therefore, we selected DB2.

We chose not to set up the WebSphere Federation Server; therefore, we did
not check the Setup WebSphere Federation Server check box.

Click Next, and the panel that is shown in Figure 5-46 on page 138 is
displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 137

Figure 5-46 Database configuration information

15.This panel asks for information about the database. We created our database
prior to the installing TADDM. Enter the database information here.

Click Next, and the Select the User Registry Option panel, which is shown in
Figure 5-47 on page 139, is displayed.

138 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-47 Select the user registry

16.Select the user registry option that will be used with TADDM.

For our implementation, we are using the file-based user registry at the
domain level, but we will use LDAP at the enterprise level; therefore, for
normal operations, the domains are connected to the enterprise, and user
authentication is done using LDAP. If the connection to the enterprise is down
for any reason, user authentication is done using the file-based user registry.
We selected File Based User Registry, because we are installing a domain
server.

Click Next, and the summary panel, which is shown in Figure 5-48 on
page 140, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 139

Figure 5-48 Summary information

17.Review the summary information, and if the information is correct, click Next
to begin the installation.

18.When the installation completes, review the installation summary information,
and click Finish. The installation of TADDM Domain Server on Windows is
now complete.

19.Before proceeding, we recommend that you verify that all of the TADDM
services are running and that you can log on to the Product Console:

a. To verify that all of the TADDM services are running, log on to the TADDM
Server with a non-root user ID, change directories (cd) to the
$COLLATION_HOME/bin directory, and issue the following command:

control status

Figure 5-49 on page 141 shows the command and the expected output.

140 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-49 The control status command and output

b. Verify that the Product Console displays successfully by bringing up your
browser and entering a URL with the host name of the Linux server where
TADDM was installed and port number 9430. For example:

http://waco:9430

The Tivoli Application Dependency Discovery Manager page, which is
similar to Figure 5-50 on page 142, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 141

Figure 5-50 Tivoli Application Dependency Discovery Manager page

Notice that the TADDM components and their associated status is
displayed in the lower left corner of the panel. Clicking Refresh refreshes
the status. All of the statuses need to be green.

20.Click Start Product Console, and when prompted, enter a valid user name
and password. The Product Console panel, similar to the panel shown in
Figure 5-51 on page 143, is displayed.

142 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-51 Product Console

5.4.2 Install interim fix 0007

At the time of writing this book, interim fix 0007 (IF0007) was the latest interim fix
that was available for TADDM 7.1. To apply IF0007, obtain the image from the
IBM support site and load it onto the Linux server. Log on to the Linux server with
a user ID that has Administrator access, go to the directory where the IF0007
code has been copied, and type the command along with the directory where
TADDM 7.1 exists. For example:

cd /root/code/ITADDM-IF0007/taddm_IF
installIF.sh /opt/IBM/cmdb

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 143

5.5 Installing a TADDM enterprise server on AIX

In this section, we guide you through a TADDM enterprise server installation on
AIX.

5.5.1 Install TADDM 7.1

To complete the installation of TADDM with a remote database, complete the
following steps:

1. Log in to the AIX system as the root user.

2. Locate the installation media and copy it to the AIX system. We copied the
installation media to the /code/TADDM_V710/TADDM directory.

3. Go to the directory where you copied the installation media and run the
setupAix.bin command, for example:

./setupAix.bin

Issuing the setupAIX.bin command displays the InstallShield Wizard
Welcome panel, which is shown in Figure 5-52 on page 145.

144 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-52 InstallShield Wizard Welcome panel

4. Click Next, and the International Program License Agreement panel, which is
shown in Figure 5-53 on page 146, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 145

Figure 5-53 License Agreement

5. Read the licensing terms, and if you agree to the licensing terms, click I
accept both the IBM and the non-IBM terms. You must accept the terms of
the licensing agreement in order to continue the installation. Click Next, and
the panel that is shown in Figure 5-53 is displayed.

146 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-54 Installation directory

6. Enter the name of the directory where you want to install TADDM. Click Next,
and the panel that is shown in Figure 5-55 on page 148 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 147

Figure 5-55 Defining a TADDM user

7. Enter the user that you want to start the TADDM Server process. This user
must be a non-root user. If this user does not exist, you can request that the
InstallShield Wizard create the user account for you by checking Create user
ID if it does not exist, and clicking Next. The Choose the installation type
panel that is shown in Figure 5-56 on page 149is displayed.

148 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-56 Choose the installation type

8. Choose the installation type: simple or advanced. A simple installation uses
default values for a local DB2 database. We do not recommend that you use
a simple installation for production environments.

We need to use the advanced installation type, because we plan to use a
remote database. Select Advanced - Install the server with options to
change default values. Recommended for production environment. Click
Next, which displays the Select the server type panel that is shown in
Figure 5-57 on page 150.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 149

Figure 5-57 Select the server type

9. Select the server type for the TADDM Server that you are installing.

We were installing a TADDM enterprise manager; therefore, we selected
Enterprise Domain Manager (ECMDB) server.

Clicking Next displays the panel that is shown in Figure 5-58 on page 151.

150 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-58 TADDM Server port information

10.Review the default port information and change any port numbers that need
to be changed. We accepted all of the default port values. Click Next, and the
panel shown in Figure 5-59 on page 152 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 151

Figure 5-59 Specifying RMI information

11.You must enter certain information on this panel, such as the host name for
the RMI server. The default value is default (use the default value if the RMI
server resides on the same system as the CCMDB). If not, enter the IP
address (not the host name) of the RMI server.

Next, select the platform binaries that you want installed. These binaries will
be copied to Windows gateways and anchor servers. If you know on which
OSs those gateways and anchors will run, choose only the binaries for those
platforms. If you are unsure of which OSs the gateways and anchors will run
on, select all of the platforms.

To start this TADDM Server when the system is started, select Start the
server at system boot.

To start the server after the installation of TADDM is complete, select Start
the server after install. Click Next, and the optional CCMDB host name and
port panel, which is shown in Figure 5-60 on page 153, is displayed.

152 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-60 Optional CCMDB host name and port

12.This panel asks for the host name and port number of the Change and
Configuration Management Database (CCMDB). We left this panel blank,
because our implementation did not include a CCMDB. Click Next, and the
Select the database type panel, which is shown in Figure 5-61 on page 154,
is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 153

Figure 5-61 Select database type

13.Select the database type for the TADDM Database that you are installing. We
are using DB2, so we selected DB2.

We chose not to set up the WebSphere Federation Server; therefore, we did
not check the Setup WebSphere Federation Server check box.

Click Next, and the panel that is shown in Figure 5-62 on page 155 is
displayed.

154 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-62 Database configuration information

14.This panel asks for information about the database. We created our database
prior to installing TADDM. Enter the database information here.

Click Next, and the Select the User Registry Option panel, which is shown in
Figure 5-63 on page 156, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 155

Figure 5-63 Select user registry

15.Select the option for the user registry that will be used with TADDM.

We will use LDAP for our user registry at the TADDM enterprise level, but we
want to show how you can switch to use LDAP as your user registry after the
installation, so we selected the File Based User Registry. Click Next, and
the summary panel, which is shown in Figure 5-64 on page 157, is displayed.

156 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-64 Summary information

16.Review the summary information, and if the information is correct, click Next
to begin the installation.

17.When the installation completes, review the installation summary information,
and click Finish. The installation of the TADDM enterprise server on AIX is
now complete.

18.Before proceeding, we recommend that you verify that all of the TADDM
services are running and that you can log on to the Domain Manager:

a. To verify that all of the TADDM services are running, log on to the TADDM
Server with a non-root user ID, use the command cd to change to the
$COLLATION_HOME/bin directory, and issue the following command:

./control status

The command and the expected output are shown in Figure 5-65 on
page 158.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 157

Figure 5-65 The control status command and output

b. Verify that the Product Console comes up successfully. Bring up your
browser and enter a URL with the host name of the Linux server where
TADDM was installed and port number 9430. For example:

http://paris:9430

158 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-66 TADDM

Notice that the TADDM components and their associated status is
displayed in the lower left corner of the panel. Clicking Refresh refreshes
the status. All of the statuses need to be green.

19.Click Domain Manager, and when prompted, enter a valid user name and
password. The Product Console panel, similar to Figure 5-67 on page 160, is
displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 159

Figure 5-67 Domain Manager

5.5.2 Install interim fix 0007

At the time of writing this book, interim fix 0007 (IF0007) was the latest interim fix
that was available for TADDM 7.1. To apply IF0007, obtain the image from the
IBM support site and load it on to the AIX server. Log in to the AIX server as the
root user, go to the directory where the IF0007 code has been copied, and type
the command along with the directory where TADDM 7.1 exists. For example,

cd /root/code/ITADDM-IF0007/taddm_IF
installIF.sh /opt/IBM/cmdb

160 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

5.5.3 Configuring the eCMDB

The TADDM enterprise server, or eCMDB server, has been installed. Now, we
need to configure the eCMDB to attach and synchronize with the TADDM
Domain Servers by executing the following steps:

1. Open a Web browser and type the URL http://<host name>:9430, where
<host name> is the host name of your eCMDB server, in the Address field.
For example, our eCMDB server host name is Paris, so we type:

http://paris:9430

A Web page that is similar to Figure 5-68 is displayed.

Figure 5-68 eCMDB

2. Click the Domain Manager to log on to the domain manager. When
prompted, enter a valid user ID and password. The domain summary panel,
which is similar to Figure 5-69 on page 162, is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 161

Figure 5-69 Domain summary

3. Click Add, and a panel that is similar to Figure 5-70 on page 163 is displayed.

162 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-70 Add Domains

4. To add a domain, enter the required information in the fields. In the Domain
Password field, enter the com.collation.sslpassphrase value that is stored in
the collation.properties file. For the Listening Port field, enter the
com.collation.jini.unicastdiscoveryport value in the collation.properties file. To
obtain this information, log in to the TADDM Domain Server and get these
values from the collation.properties file.

To add our TADDM Domain Servers (Waco and Southend), we used the
following steps:

a. We logged in to the TADDM domain Waco and issued the commands in
Example 5-1 on page 164 to get the sslpassphrase and
unicastdiscoveryport values, as shown.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 163

Example 5-1 Obtaining sslpassphrase and unicastdiscoveryport values

[root@waco etc]# cd /opt/IBM/cmdb/dist/etc
[root@waco etc]# cat collation.properties | grep sslpassphrase
com.collation.sslpassphrase=2733817229
[root@waco etc]# cat collation.properties | grep unicastdiscovery
com.collation.jini.unicastdiscoveryport=4160
[root@waco etc]# butt

These values can now be entered in the eCMDB Add Domain window.
Refer to Figure 5-71.

Figure 5-71 Add Waco domain

b. Click Add Domain. Figure 5-72 on page 165 shows the Domain Summary
after the Waco domain was successfully added.

164 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-72 Waco domain added

c. Next, we added the Southend domain. Click Add.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 165

Figure 5-73 Add Southend domain

Search for the com.collation.sslphrase and
com.collation.jini.unicastdiscoveryport values, and copy these values into
the Domain Password and Listening Port fields. Enter the Domain Name
and Fully Qualified Host Name/IP values, and then, click Add Domain to
add this new domain.

d. Both domains have now been added. Figure 5-74 on page 167 shows that
both domains have been added.

166 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-74 Waco and Southend domains added

5. Now, we need to perform the initial synchronization and schedule regular
synchronization for both domains:

a. From the Domain Summary, highlight the Waco domain and click
Schedule, which displays a panel similar to Figure 5-75 on page 168.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 167

Figure 5-75 Synchronize Domain: Waco

b. Click Perform full Synchronization, and click Start. A panel similar to
Figure 5-76 on page 169 is displayed when the synchronization is
complete.

168 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-76 Waco full synchronization complete

c. From the Synchronize Domain panel, click Add to schedule a
synchronization for the Waco domain. A panel that is similar to Figure 5-77
on page 170 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 169

Figure 5-77 Schedule daily synchronization for Waco

d. Give the schedule a name, and then, enter the other fields.

We named the synchronization for the Waco domain DailyWacoSync. We
scheduled the synchronization to begin on 4/19/2008 and run every day at
04:00 AM. Click Add to create the scheduled synchronization. Figure 5-78
on page 171 shows that the daily synchronization is scheduled for the
Waco domain.

170 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-78 Waco daily synchronization scheduled

e. The steps to perform the initial full synchronization for the TADDM domain
Southend are similar to the previous steps a-d.

Both domains, Waco and Southend, have had the initial full synchronization
done and a daily synchronization scheduled. Figure 5-79 on page 172 shows
the resulting domain summary.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 171

Figure 5-79 Domain summary showing scheduled synchronizations

5.6 Configuring LDAP

When a TADDM Domain Server is connected to the TADDM enterprise server,
user authentication for the TADDM domain is done through the TADDM
enterprise.

We used the following steps to configure our TADDM enterprise server to use
LDAP for user authentication.

But first, we had to enter the TADDM users in our LDAP registry. Our LDAP
registry was implemented using Tivoli Directory Server (TDS) running on a
Windows Server 2003 server with the host name, Helsinki. The LDAP server port
was port 1389. We added a new branch for our TADDM users to keep them
separate from other projects that were using this LDAP server. The distinguished
name for this branch was dn: o=IBM,c=US,ou=ITSO. We created two
organizational units under this branch: one unit for users and one unit for groups.

172 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

We then added the users. Example 5-2 shows adding the relative distinguished
name administrator to the user container.

Example 5-2 Adding the relative distinguished name administrator

dn: cn=administrator,ou=users,o=IBM,c=US,ou=ITSO
uid: administrator
userpassword: collation
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: person
objectclass: top
title: TADDM Administrator
sn: administrator
cn: administrator

After the definitions were completed with TDS, we restarted the Windows TDS
service so that the changes that we made to the LDAP registry were active.

Next, we set several security-related properties in the collation.properties file. We
set the following properties:

1. Specify the user management module that is used by this TADDM Server.
Valid values are:

– file for a file-based user registry. This is the default value.

– ldap for an LDAP user registry.

– vmm for a user registry that uses the federated repositories of WebSphere
Application Server.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.usermanagementmodule=ldap

2. Set the LDAP authentication enabled value to true.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth,ldapAuthenicationEnabled=true

3. Set the host name and port number of the LDAP server.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth.ldapHostName=HELSINKI.itsc.austin.ibm.co
m

com.collation.security.auth.ldapPortNumber=1389

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 173

4. Specify the starting point in the LDAP hiearchy to begin searching.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth.ldapBaseDN=ou=users,o=IBM,c=US,ou=ITSO

5. Specify the name of the attribute that was used to represent users in LDAP.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth.ldapBaseDN=cn=root

6. Specify the user password that was used to authenticate to LDAP if simple
authentication is used.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth.ldapBindPassword=YqANUIiFCD4=

7. Specify the LDAP object class and naming attribute that were used for
naming a person.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth.ldapUserObjectClass=person
com.collation.security.auth.ldapUIDNamingAttribute=cn

8. Specify the LDAP object class and naming attribute that were used for
naming a group.

For example, in the $COLLATION_HOME/etc/collation.properties file:

com.collation.security.auth.ldapGroupObjectClass=organizationalUnit
com.collation.security.auth.ldapGroupNamingAttribute=ou
com.collation.security.auth.ldapGroupMemberAttribute=uniquemember

After making changes to the $COLLATION_HOME/etc/collation.properties file,
stop and start TADDM so that the changes become active.

5.7 Deploying anchors and gateways

The TADDM Server uses Secure Shell (SSH) to directly communicate with
computer hosts and the other components that it discovers. However, there are
two cases when the TADDM Server must communicate through a proxy to
collect system information:

� When using a firewall between the TADDM Server and other sections of your
network

� When discovering and collecting information from Windows systems

174 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

In this section, we teach you how to enable discoveries across the firewall. The
next section, 5.8, “Setting up Windows gateways” on page 182, will teach you
how to enable the discovery of Windows systems.

In order to discover components, each discovery server must be able to
communicate with other computer hosts and network devices. In cases when a
firewall prevents direct access from the discovery server to certain hosts or
devices, you can specify a computer system that does have access to the hosts
or devices to be an anchor host. An anchor host acts as a proxy to assist in the
discovery process.

You do not need to configure anchor hosts during the installation process, but
you need to include anchor hosts in your installation plan and verify the system
requirements for the candidate machines. Following the installation of the
TADDM Server, you can use the TADDM Product Console to configure which
hosts serve as anchor hosts in your environment.

5.7.1 Enabling discoveries across the firewall

If a firewall exists between the TADDM Server and hosts and network devices to
be discovered, you must enable discoveries across the firewall. Complete the
following steps to enable discoveries across the firewall:

1. Specify at least one computer system in the firewall zone that is adjacent to
the firewall zone where the TADDM Server is located. Any operating system
that can be used as a Domain Manager can be used as an anchor.

This computer system, which is called an anchor, runs a discovery
subsystem to discover the components that are located in the section. There
is nothing to install on the anchor system, because the TADDM product
automatically deploys and manages the anchor server software on the
anchors.

2. Configure the firewall to allow SSH access to the anchor.

The TADDM Server uses the SSH port on the Anchor Server to push and
automatically run the discovery software on the anchor that is on the other
side of the firewall. The discovery software on the anchor then returns
information about the discovered components in its zone to the TADDM
Server.

3. If there are multiple zones and firewalls, each firewall zone needs its own
anchor so that the communications can be relayed from each anchor across
each firewall.

You must also allow SSH traffic on each firewall.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 175

4. When running a discovery that uses an anchor, make sure that the anchor is
included in the discovery scope, which is a change from previous versions of
TADDM. For example, to discover a target that is in a scope set (for example,
scopeset1) that is assigned to an anchor, both the anchor and scopeset1
must be included in the discovery scope. The scope sets that are assigned to
an anchor need to be only the IP addresses that are accessible by that
anchor.

5.7.2 Defining an anchor host

To add an anchor host, complete the following steps:

1. Log on to the TADDM Product Console.

2. On the Discovery menu, click Anchors and Gateways.

3. Click Add to define a new anchor or gateway.

4. In the Add Anchor Host window, select Type to be Anchor. In our
environment, we used Zaire as an anchor host.

5. Select Address or Host Name to set the anchor host that you are adding. If
you select Address, ensure that the IP address of each anchor host computer
system is contained within the scope.

6. Select Entire Scope or Limit to selected scope to set the scope.

If you select Limit to selected scope, select the scope set to use.

Remember, the anchor must be included in any scope assigned to it.

7. Click OK.

Editing the scope of an anchor
To edit the scope of an anchor, complete the following steps:

1. On the Discovery menu, click Anchors and Gateways.

2. Select an anchor.

3. Click Edit Scope.

4. Change the scope set for the anchor or gateway.

5. Click OK.

176 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Setting an anchor port for an anchor server
To set an anchor port for an anchor server, complete the following steps:

1. On the Discovery menu, click Anchors and Gateways.

2. Select an anchor server.

3. Enter a port number.

4. Click OK.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 177

Discovering an anchor
After you define your anchor, you can verify the setup (for example, the firewall
has the SSH port open, credentials are correct, and the TADDM Server can
distribute binaries to the anchor) by discovering that anchor. You can discover
the anchor by following these steps:

1. Go to Discovery Scope, and click Add Set to create a new Set called
AnchorHosts, as shown in Figure 5-80. Click OK.

Figure 5-80 Adding a new Discovery Scope Set

178 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

2. Click Add (Figure 5-81) to add the new target. We entered the host name
Zaire.itsosj.sanjose.ibm.com. Then, click OK.

Figure 5-81 Adding a new target

3. Go to Discovery Access List, click Add (Figure 5-82) to add a new
credential and complete the fields in the window with the correct information.

Figure 5-82 Entering Access List credentials for Zaire

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 179

4. Click the Scope Limitations tab (Figure 5-83), and choose the AnchorHosts
scope that you previously created. Click OK.

Figure 5-83 Entering scope limitations for anchor

180 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

5. Select Discovery Overview, and run a new discovery to your new anchor
(Figure 5-84), which in our case, was lincanc1. Click OK.

Figure 5-84 Starting a new discovery

Shutting down an anchor server
To shut down an anchor server, complete the following steps:

1. Verify that the process for the anchor server is no longer running by using the
following command:

% ps -ef |grep -i anchor

You get the following output, which identifies any anchor server processes
that are still running:

 coll 23751 0.0 0.0 6136 428 ? S Jun02 0:00 /bin/sh
 local-anchor.sh 8494 <more information here>

2. Stop the process by typing the following command:

- % kill -9 23751

Note: If you want to shut down the TADDM Server, you must also shut down
the anchor server. If you do not shut down the anchor server, unexpected
behavior can occur, including the bad performance of certain discoveries.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 181

You get the following output if the anchor server process is gone, which also
shows that there are no processes running:

% ps -ef | grep -i anchor

5.7.3 Open ports

To discover components, the TADDM Server must be able to use SSH to
communicate with all of the computer hosts and any other devices that support
SSH.

SSH is therefore required on all non-Windows computer hosts that you want
discovered. A Windows gateway is required in order to discover Windows
computer hosts and the Windows gateway must have an SSH client installed. In
addition to SSH, the TADDM Server uses Simple Network Management Protocol
(SNMP) and Java Management Extensions (JMX), among other methods, to
communicate with computer hosts and devices.

As discussed earlier, an anchor is required in order to discover resources on the
other side of a firewall. Multiple TADDM Servers can share a single anchor, but
each TADDM Server needs to use a different RMI port on that shared anchor.
The anchor server does not allow multiple TADDM Servers to use the same RMI
port during discoveries.

If a firewall is preventing access to hosts or devices on these ports, you must
configure an anchor host to properly allow discoveries. For more information
about how to configure TADDM to use anchor hosts to allow for discoveries
across firewalls, see the topic about using TADDM in secure environments in the
TADDM User Guide. The link to the document is:

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ibm.t
addm.doc_7.1/cmdb_user.pdf

You have to enable SSH communication across the firewall.

5.8 Setting up Windows gateways

In this section, we teach you about discovering Windows systems.

If your network contains Windows-based systems that are to be discovered with
TADDM, you must specify a Windows system to serve as a gateway server in
order to discover information about the Windows-based systems that are running
in your environment. This gateway server must be in the same firewall zone as

182 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ibm.taddm.doc_7.1/cmdb_user.pdf

the discovered Windows hosts and must have SSH access from the discovery
server.

You do not need to configure Windows gateways during the installation process,
but you need to include gateways in your installation plan and verify the system
requirements for candidate machines. Following installation, you can use the
TADDM Product Console to configure which hosts will serve as Windows
gateways on your network.

To configure the TADDM Server for Windows discovery, complete the following
steps:

1. Specify a Windows gateway server that communicates with Windows
systems.

If the gateway resides in a firewalled zone, the zone must contain an Anchor
Server, or the firewall must be configured to allow SSH from the upstream
TADDM Server (or anchor server) to the gateway.

2. Limit the gateway to specific scope entries.

3. Add authentication information for the gateway server and for the Windows
hosts that are discovered.

4. Configure the firewall to allow SSH access to the anchor or the Windows
gateway.

The TADDM Server uses the SSH port on the firewall to automatically run the
discovery software on the Windows gateway that is on the other side of the
firewall. The Windows gateway then returns information about the discovered
components, in its section, to the TADDM Server.

5.8.1 Installing Cygwin SSH

The TADDM Server communicates with Windows gateways through SSH. The
Windows gateway then communicates with Windows hosts using Windows
Management Interface (WMI). In order for the Windows gateway to communicate
with the TADDM Server via SSH, an SSH Server/Daemon (sshd) client must be
installed on the Windows gateway. TADDM V7.1 supports two SSH clients:
Bitvise WinSSHD 4.06a or higher and Cygwin SSH. In the following example,
we install Cygwin SSH.

To install Cygwin SSH:

1. Download the cygwin setup program from the following Web site:

http://www.cygwin.com/

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 183

http://www.cygwin.com/
http://www.cygwin.com/

2. Run the setup program. A panel similar to Figure 5-85 is displayed.

Figure 5-85 Cygwin NetRelease Setup Program

3. Click Next.

184 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-86 Choose A Download Source

4. Choose the appropriate option. Because we downloaded the package prior to
running the installer, we choose Install from Local Directory. Click Next.
Figure 5-87 on page 186 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 185

Figure 5-87 Choose Installation Directory

5. Set the Root Directory where you want Cygwin to be installed. We entered
C:\cygwin. We took the defaults for the other options on this window. Click
Next. Figure 5-88 on page 187 is displayed.

186 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-88 Select Local Package Directory

6. Enter the Local Package Directory where you want to store the Cygwin
installation package. We downloaded Cygwin to the C:\temp\ directory; the
setup program actually wanted a directory one level beneath that. If you put
the wrong directory here, on the next panel (Figure 5-89 on page 188), when
you expand the categories, you will not see the package that you need to
install.

Click Next. Figure 5-89 on page 188 is displayed.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 187

Figure 5-89 Select Packages

7. Select the packages to install.

Take all of the defaults, as well as:

a. cygrunsrv from the admin category (Version 1.17-1 or later)

b. opensshd from the net category (Version 4.6p 1-1 or later)

Click Next.

188 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-90 Installation Status and Create Icons

8. Notice the Installation Status. If you want to create an icon on the Desktop, or
add an icon to the Start Menu, check the appropriate option.

Click Finish.

9. When the installation is finished, start the cygwin bash shell.

10.Use the cygwin mkpasswd utility to create an initial /etc/passwd from your
system information. You can also use the mkgroup utility to create an initial
/etc/group. For more information, refer to the Cygwin User’s Guide at:

http://sources.redhat.com/cygwin/cygwin-ug-net/cygwin-ug-net.html

For example, the following command sets up the password file, passwd, from
the local accounts on your system:

mkpasswd -1 > /etc/passwd

11.Run the ssh-host-config program and configure SSH. Figure 5-91 on
page 190 shows the output when we ran ssh-host-config on Wisla. It also
shows our answers to all of the questions that were asked by this config tool.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 189

http://cygwin.com/cygwin-ug-net/cygwin-ug-net.html
http://sources.redhat.com/cygwin/cygwin-ug-net/cygwin-ug-net.html

Figure 5-91 ssh-host-config utility

5.8.2 Adding or changing a Windows gateway

In this section, we tell you how to add, change, and delete a Windows gateway.

190 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Adding a Windows gateway
To add a Windows gateway, complete the following steps:

1. On the Discovery menu, click Anchors and Gateways.

2. Click Add to define a new gateway.

3. In the Add Anchor window (“Editing the scope of a gateway” on page 191),
from the Type list box, select Windows gateway.

4. Select Address or Host Name to set the Windows host that you are adding.

5. Select Entire Scope or Limit to selected scope to set the scope, and click
OK. If you select Limit to selected scope, select the scope set to use.

Figure 5-92 Adding a gateway and setting the scope

Editing the scope of a gateway
To edit the scope of a gateway, complete the following steps:

1. On the Discovery menu, click Anchors and Gateways.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 191

2. Select an anchor or gateway.

3. Click Edit Scope.

4. Change the scope set for the anchor or gateway.

5. Click OK.

Deleting a gateway
To delete a gateway, complete the following steps:

1. On the Discovery menu, click Anchors and Gateways.

2. Select a gateway.

3. Click Delete.

Discovering your Windows gateway
After you define your Windows gateway, one way to verify that it is working (for
example, credentials are valid, SSH client is set up properly, TADDM Server can
distribute binaries, and so forth) is to run a discovery to discover the Windows
gateway. You can discover the Windows gateway using the following steps:

1. Go to Discovery Scope, and click Add Set to create a new set called
WindowsGateway. Click OK.

2. Click Add to add the new target.

3. Go to Discovery Access List, and click Add to add a new credential.
Complete the fields in the window with the correct information.

4. Go to Discovery Overview, and run a new discovery (Figure on
page 183) of your new Windows gateway, in our case, Wilas.

Note: Before you can discover the Windows gateway, the SSH client must
be installed. Refer to 5.8.1, “Installing Cygwin SSH” on page 183 for an
example of installing Cygwin.

192 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 5-93 Running discovery of new Windows gateway

5.9 Troubleshooting

TADDM provides comprehensive logging features that allow you to isolate any
problems that you might experience.

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 193

5.9.1 Server not started automatically

If the TADDM Server does not start automatically, check the following settings
(execute as the CMDB user, not as root):

� To verify that your system was set up to start the TADDM Server during
startup, use the chkconfig --list collation command to see at which
OS-startup levels the service is active:

[root@taddm bin]# chkconfig --list collation
collation 0:off 1:off 2:on 3:on 4:on 5:on 6:off

� To disable automatic start of the TADDM Server at OS-startup levels 2, 3, 4,
and 5, use the following command:

[root@taddm bin]# chkconfig --level 2345 collation off

� To verify your new settings, issue a new chkconfig --list command:

[root@taddm bin]# chkconfig --list collation
collation 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Starting and stopping the TADDM Server
You can use the built-in service interface to start, stop, and query the status of
your TADDM Server:

� To start the server, use:

control start

� To stop the server, use:

control stop

� To get the server status, use:

control status

Server start is slow
If your server starts slowly, there might be information left over from previous
discoveries, so clean out the contents of:

${COLLATION_HOME}/var/dwitem and ${COLLATION_HOME}/var/scwitem

194 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

5.9.2 Installation log files

The installation log files are located in the installLogs subdirectory in the location
where you installed the product, which is typically /opt/IBM/cmdb. The names of
the files that are produced during installation are self-explanatory. The files are:

� cdb_install.log
� cdb_install_stdout.log
� cdb_start_server_sterr.log
� cdb_install_stderr.log
� cdb_start_server.log
� taddm_IF.log

 Chapter 5. Tivoli Application Dependency Discovery Manager installation steps 195

196 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Part 3 Discovery and
Reporting Case
Studies

In this part, we discuss discovery and reporting in Tivoli Application Dependency
Discovery Manager and guide you through several case studies.

Part 3

© Copyright IBM Corp. 2008. All rights reserved. 197

198 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 6. Discovery scenarios

In this chapter, we describes how components, configuration data, and
dependencies are discovered and fed into the IBM Tivoli Application Discovery
and Dependency Manager (TADDM) database from both the built-in sensors, the
customizable templates, such as custom servers and computer systems, and
loading discovery library books that were generated by external solutions.

TADDM provides a variety of specialized sensors that cover most of the
infrastructure components that are used in large enterprises today. But in order
to support custom applications and special cases, the openness of the Change
and Configuration Management Database (CCMDB) architecture allows for
additional ways to automatically feed data into the solution. This chapter
describes these options, starting with feeds related to discoveries and then
presenting how to manipulate the database from external systems.

The major topics that we discuss in this chapter are:

� “Discovery sensors” on page 200
� “Customizing and managing discoveries” on page 230
� “Reconciliation and prioritization” on page 250
� “Discovery Library Adapters” on page 263
� “Understanding the DLA APIs” on page 270
� “Example of Discovery Library Adapter” on page 282

6

© Copyright IBM Corp. 2008. All rights reserved. 199

6.1 Discovery sensors

TADDM discovers and collects configuration information for the entire application
infrastructure, identifying deployed software components, physical servers,
network devices, virtual LAN, and host data used in a runtime environment.

Discovery is performed using sensors that are currently built and deployed as
part of the TADDM product. The sensor asks, figuratively, the host and the
applications how they are configured and to whom they are talking.

Discovery sensors are the heart of TADDM and the primary way of populating
the TADDM Database. In this section, we describe how data is fed into TADDM
during discovery.

6.1.1 Discovery overview

The TADDM Agent-free discovery engine manages the overall discovery
process. The discovery process collects the data that is needed to populate the
Common Data Model to represent the specific data center infrastructure. Core to
the discovery process are lightweight discovery sensors, which build upon the
Common Data Model to comprehensively discover the infrastructure
components, their configurations, and dependencies.

Sensors provide the TADDM product with an application discovery and
dependency mapping facility to to discover the relationships between
components executing in your IT infrastructure.

6.1.2 Discovery components

The TADDM Discovery subsystem is composed of the following components:

� Discovery engine (Discovery Manager)
� Sensors
� Discover JavaSpace
� Discover observer
� Process Flow Manager

200 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-1 Discovery components

Discovery engine

The discovery engine service is responsible for discovering the contents of the
datacenter, which it does by running discovery sensors. A discovery workflow
determines which sensor to run against what target.

The discovery engine performs its discovery using a set of discover sensors.
Each discover sensor has an input object called a seed, then a discover step, and
an output called a result. Discover workflow is determined by a converter, which
takes a result as input and produces a new seed object.

A discovery is started by providing a set of initial seeds. This initial seed is
typically an IP address or a range of IP addresses to discover. This seed
provides a starting point for the discovery engine, which triggers the initial
sensors. The results from these sensors are then converted into new seeds,
which trigger a new set of sensors, and so on, until no more result-to-seed
conversions can be made.

 Chapter 6. Discovery scenarios 201

Sensor
The sensor is the primary agent for discovery in TADDM. It is responsible for
probing the remote system and discovering configuration and dependency
relationship information about its characteristics. The data that the sensor
discovers is mapped into model objects that then get saved to the database. For
certain sensors, discovered results also cause new seeds to be created; thus,
new sensors are spun off.

Discover JavaSpace
Discover JavaSpace is the integration point for the discovery workflow. It is used
as a synchronization space for the implementation of the discovery logic as a
master and worker pattern. During a discovery run, the discovery engine stores
the seed and result objects in JavaSpace, which maintains a number of
discovery tasks that the sensor threads perform:

� The sensor selects the seeds according to the discovery tasks that represent
the target system.

� The sensor discovers the target system and returns results.

� The sensor threads create new discovery tasks from seeds.

JavaSpaces are closely tied to the Jini architecture. You can read about Jini and
JavaSpaces at the following Web site:

http://www.jini.org

Discover observer
The discover observer service persists the results that the discover sensors
discover by communicating with the Topology Manager. It also determines the
status of a discovery by observing the contents of the JavaSpace.

Process Flow Manager
The Process Flow Manager service controls the discover state, and it exposes
an application programming interface (API) to the external world that starts and
cancels a discovery. It also takes care of running necessary post-discover steps
(such as the Topology Builder that builds the relationships and dependencies
among the discovered items).

6.1.3 Discovery process in detail

You can initiate the discovery process from the GUI or API by specifying an initial
scope (seed). This initial seed is typically an IP address or a range of IP
addresses to discover. A discovery workflow process is displayed in Figure 6-2
on page 203.

202 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.jini.org
http://www.jini.org

Figure 6-2 Discovery workflow process

Level 1 discovery
For a level 1 discovery profile, the StakScan sensor performs credential-less
discovery. The StakScan sensor can discover active computer systems in the
runtime environment. It discovers all computer systems in your environment and
tries to determine the operating system that runs on each computer system with
a certain level of confidence.

The StakScan sensor uses multiple ways to discover the computer systems in
order to determine the type of computer system. It utilizes a heuristic-based
approach to determine whether a given OS type is present or not. When
launched, the sensor tries the following three techniques to collect information
from a computer system:

� Host scanning rule-based OS fingerprinting to determine the type of OS

� The use of the Open Source tool Nmap and OS information

� Remote Execution and Access (RXA) to determine OS level details, such as
OS name, level, and so on

Based on the information collected, the sensor guesses the installed OS type
with a certain confidence level. If this confidence level is greater than a certain
threshold, a computer system of that OS type is created; otherwise, the computer
system is left as an IP device type to be classified appropriately later by a deeper
discovery. You can configure the threshold for the confidence level.

 Chapter 6. Discovery scenarios 203

Level 2 and 3 discovery
Figure 6-3 displays the basic discovery flow for the level 2 and level 3 discovery
profiles. Note that each box in Figure 6-3 represents a different native TADDM
sensor.

Figure 6-3 Basic discovery sensor sequence

The basic discovery flow actions are:

1. TADDM specifies an initial scope (seed) for a discovery run, either through
the GUI or an API call. This initial scope becomes the first seed for the
discovery run and is written to the Java Spaces.

2. TADDM identifies the active IP devices in the chosen scope:

– TADDM attempts a Transmission Control Protocol (TCP) connection on
several ports (such as 22 and 135) looking for a response.

– Any response is enough to notify TADDM that the device exists.

– An IP device is created, and a PortScan seed is created.

Tip: The StakScan sensor uses remote anchors, such as other TADDM
sensors, and no gateway access is needed for Windows discovery.

204 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

3. TADDM determines if there is a method of establishing a session to the IP
device:

– The PortSensor tries a TCP connection on several ports (including 22 and
135) to try to establish what technology TADDM uses to discover the host.

– TADDM creates either a SessionSensor seed or an SnmpMib2Sensor
seed.

4. The session sensor activities:

a. If the SSHPort was open, the session sensor tries to establish a Secure
Shell (SSH) connection using credentials from the Access List.

b. The session sensor tries to use Access List entries of type computer
system or Windows computer system, in sequence, from the Access List
until an entry works or until the list is exhausted.

c. If the Windows Management Interface (WMI) port was open, the session
sensor establishes an SSH connection with a gateway computer system
(provided that a gateway computer system is found for the target).

d. If the session sensor cannot establish a session, an SnmpMib2Sensor
seed is created.

e. If a session is established, a Generic Computer System Sensor seed is
created.

5. The Generic Computer System Sensor:

– Tries to determine what type of OS is installed, such as AIX, Linux,
SunOS, Hewlett-Packard UNIX (HP-UX), Windows, Tru-64, OpenVMS,
and so on.

– Creates a seed that is appropriate for the OS and discovers other system
components, such as sharing, storage, and so on, as shown in Figure 6-4
on page 206.

6. An OS-specific sensor is invoked and uses native commands, such as ps,
netstat, and lsof, to find a list of all of the running processes that are
listening on a socket.

7. The sensor proceeds to perform its application (ISS, Apache, and so on)
discovery, and the discovered results are written back to the Java Space.
Next, the discovery observer detects that a result was placed in the Java
Spaces and extracts the result.

Figure 6-4 on page 206 illustrates the operating system and application
discovery process.

 Chapter 6. Discovery scenarios 205

Figure 6-4 OS and application discovery

8. The discovery observer saves the result to the database. If there is a result
converter associated with the sensor, the discovery observer passes the
result to that result converter.

9. The result converter parses the result and might generate new seeds, which
are put back in the Java Spaces.

TADDM is shipped with many built-in sensors. You cannot modify these sensors,
but you can disable and enable them when needed. IBM continuously develops
new sensors that are based on client needs.

One of the available sensors is the CustomServerSensor. Its objective is to
discover (or exclude) custom-defined server processes that were defined
through the definition (and enablement) of one or more Custom Server
templates. We discuss Custom Server templates in 6.2.1, “Custom servers” on
page 231.

Our discussion about the discovery process is complete. Although much of the
functionality that we described occurs in the background, it is useful to have
detailed knowledge when you dive into discovery tuning and troubleshooting. For
details about how to run discoveries, refer to 6.1.7, “Discovery profiles” on
page 218.

206 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.1.4 Dependency discovery

Relationships specify the connection among various entities more precisely and
gives meaning to the type of information that is stored at each entity. Without
relationships between data objects in the TADDM Database, the data store is
simply a repository for discovered configuration information and does not provide
a complete picture of the information technology enterprise. In this section, we
discuss dependency and relationship discovery.

Dependency and relationship overview
As part of the discovery process, the discovery feature examines the
configuration of each device and discovers the ports that are assigned to the
applications. The discovery feature uses this information to determine the
relationships and the dependencies between applications and other discovered
components. A dependent component relies on data or configurations from
another component, and a provider component provides information to a
dependent component.

TADDM discovers dependencies in two ways:

� By looking at the TCP connections that the lsof command lists

� By looking at the configuration of programs, such as Java Database
Connectivity (JDBC) resources that are returned by Java Management
Extensions (JMX)

In the first case, only TCP connections that are present at the time when the
discovery runs the lsof command are discovered.

Eventually, a discovery catches those connections that are established, and
creates the dependencies. If you do not want to wait that long, you can manually
create a connection. After the connection is actually discovered, the manual
connection is promoted to a transactional dependency.

Dependency types
There are two types of dependencies: transactional and service.

Transactional dependencies occur between application components, such as
Web servers, application servers, and databases. The dependent component
issues requests to the provider component in order to perform certain functions,
such as Java Database Connectivity (JDBC) calls from a Java 2 Platform,
Enterprise Edition (J2EE) server to a database. In this case, the provider is often
referred to as a server and the dependent as a consumer or client.

 Chapter 6. Discovery scenarios 207

Service dependencies occur between application components and infrastructure
services, such as Domain Name System (DNS), Lightweight Directory Access
Protocol (LDAP), and Network File System (NFS). The provider is the
infrastructure service, and the dependent component requests system services
from the provider, such as a request to map a DNS name to an IP address.

6.1.5 Understanding sensors

Sensors work by emulating a user running locally to gather (discover)
information. The sensor is able to gather discovery-related information without
incurring any of the costs associated with the installation and maintenance of an
agent locally on the client machines to be discovered. The sensors use secure
network connections, encrypted access credentials, and host native utilities. In
this way, a sensor is safe to use and provides the same data acquisition that you
acquire by having the software residing locally on the client machine.

Using a discovery profile, you take control of what you discover. For example,
you can configure individual sensors, manage multiple configurations of the
same sensor, select the appropriate configuration based on a set of criteria, and
manage sets of configurations of multiple sensors to be applied on a single
discovery run. When you run a discovery, you must select a profile. If no profile is
selected, the discovery is run against the default profile, which is the Level 3
discovery. By default, there are three levels of discovery profiles that you can
choose, depending on the type of discovery that you want. The default profile
can be changed in the Product Console. The profiles provide the following
capabilities:

� You can use credential-less scanning to discover basic information about the
active computer systems in the runtime environment.

� You can use OS credential scanning to gather detailed information about
each operating system in the runtime environment.

� You can use full credential scanning that discovers the entire application
infrastructure, deployed software components, physical servers, network
devices, virtual LAN, and host data used in a runtime environment.

Sensor logging
There is a property in the $COLLATION_HOME/etc/collation.properties file that
improves readability of the logs by separating the logging into per-sensor log files
for each discovery run. To enable this capability, set the following property as is
shown in Example 6-1 on page 209.

208 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Example 6-1 Sensor logging

com.collation.discover.engine.SplitSensorLog=true

This property separates the logs into the following directory structure:

$COLLATION_HOME/log/sensors/<runid>/sensorName-IP.log

For example:

sensors/20070621131259/SessionSensor-10.199.21.104.log

6.1.6 Setting up discoveries

TADDM automatically discovers and provides a top-down, application-centric,
topological map of the data center infrastructure. TADDM discovers many
configuration items, including:

� Software applications, hosts, network devices, and software servers

� Configuration attributes of the discovered components

� Runtime dependencies of the various components

To optimize the breadth and depth of the information that TADDM gathers, there
are setup tasks that are required within TADDM and in your environment.

For discoveries to run in your environment, you need to provide TADDM with
three types of information:

� Discovery scope
� Access Lists (not required for credential-less discoveries)
� Schedule

Important: The default logging for all of the sensors is put in the
$COLLATION_HOME/log/services/DiscoveryManager.log file if you do not set
this property to true.

Note:

� The runid includes the date of the discovery run, and the log file name
includes the sensor name and IP address of the target.

� When using this option, the logs are not automatically cleared. You must
clear the logs manually, if required.

 Chapter 6. Discovery scenarios 209

In this section, we focus on how to prepare TADDM and your environment for
running discoveries. Discovering your environment is an iterative process. A full
understanding of your IT infrastructure develops through successive discoveries.

In the Product Console, either the Discovery tab or the Discovery menu gives
you access to the items that we need in order to configure discoveries.

Discovery scope
A discovery scope identifies the devices, computer systems, and other
components in your infrastructure that you want the server to access. You
specify scopes using IP addresses, ranges of IP addresses, or subnets to define
the boundary of the networks that can be accessed during discovery. A scope
can be as small as a single IP address or as large as a range of IP addresses or
a Class C network. You can also exclude specific devices from the scope.

When there is a firewall between the server and the systems, which are in
another area of your network, that you want discovered, you must configure the
firewall to allow access on the SSH port (port 22) and then set up an anchor.
Refer to “Anchor servers” on page 52 for more information about anchor servers.

Table 6-1 describes the information that is displayed for a discovery scope in the
Scope pane.

Table 6-1 Discovery scope information

Information Description

Method Specifies whether to include or exclude the IP address, IP address
range, or subnet

Type The type of address (from among the following options) that is
specified:

Subnet: An IP subnet, for example, 255.255.255.0
Range: IP address range, for example, 1.2.3.4 - 1.2.3.10
Host: IP address, for example, 1.2.3.4

Value The actual IP address, IP address range, or subnet

Description A user-supplied description or host name of the discovery scope

210 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Setting the discovery scope
To configure a scope set and scope, complete the following steps from the
Product Console:

1. From the menu bar, click Discovery Scope. The Scope pane is displayed.

2. To define a new discovery scope set, click Add Set. The Scope Set Name
window is displayed.

3. In the Name field, type the name for the new scope set.

4. Click OK. The new scope set appears in the Scope Sets list.

5. To add the scope and contents to the scope set, select the scope set that you
just created and click Add. The Add Scope window is displayed.

6. To add the settings for the scope, complete one of the following steps:

f. Select Subnet from the IP Type list and type the IP address of the subnet
in the IP Address field. This IP address must be a unique value within the
scope set.

g. Select Range from the IP Type list and type the starting IP address and
the ending IP address in the IP Addresses field. These IP addresses must
be unique values within the scope set.

h. Select Host from the IP Type list and type the IP address of the host in the
IP Address field or type the host name in the Hostname field. This IP
address or host name must be a unique value within the scope set.

7. To exclude devices from your scope, click Add Exclusion and complete one of
the following steps:

a. From the IP Type list, select Subnet and type the IP address of the subnet
in the IP Address field.

b. From the IP Type list, select Range and type the starting IP address and
the ending IP address in the IP Address field.

8. To save the scope, click OK. The new scope appears in the list.

 Chapter 6. Discovery scenarios 211

Using the command line to load scopes
Rather than using the GUI, it might be faster and easier to set up scopes by
creating a text file or files and loading them into TADDM using the following
command line, located in:

loadscope.jy [-d] -u <username> -p <password> -s <scopeset> \
load <scopefile>

Where:

The following definitions explain the command:

-d Turns on verbose debug logging

-u username User name under which the command runs

-p password Password matching the user name

-s scopeset Scope set to use for loading the scope elements

load Loads the scope entries, and appends new entries to
existing entries

scopefile Name of the file containing the scope entries

In Example 6-2, we show you step-by-step how to use the loadscope.jy
command:

Example 6-2 Using the loadscope.jy command

1) Create a file with the scope information
$ cat ITSOLab.scope
ITSO Lab Scope
Adding the entire ITSOLab Network, excluding the default gateway and
the DNS server
9.3.5.0/255.255.254.0,9.3.5.1: 9.3.5.2,ITSOLab Scope

2) Go to COLLATION_HOME/bin directory:
$cd $COLLATION_HOME/bin

3) You are able to execute loadscope.jy command, as is showned:
$./loadscope.jy -d -u administrator -p collation -s "ITSO Lab" load
/home/cmdbadmin/ITSOLab.scope
Processing: # ITSO Lab Scope
Processing: # Adding the entire ITSOLab Network, excluding the default
gateway and the DNS server
Processing: 9.3.5.0/255.255.254.0,9.3.5.1: 9.3.5.2,ITSOLab Scope
Successfully parsed
DEBUG--> XML stored in /tmp/tmp1loadscope.xml

212 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

After the scope is loaded, you can check the results by using the GUI or directly
opening the /tmp/tmp1loadscope.xml file.

Using the GUI, go to Discovery Scope and click ITSO Lab Set Scope. You
will see a panel as shown in Figure 6-5.

Figure 6-5 Viewing the loaded scope using the GUI

To open the tmp1loadscope.xml file, you can use the cat command on the
command line interface (CLI) of a Linux or UNIX machine. For example:

$ cat /tmp/tmp1loadscope.xml

After you enter this command, you see the content of the file, which is similar to
Figure 6-6 on page 214.

 Chapter 6. Discovery scenarios 213

Figure 6-6 Viewing the loaded scope using the CLI

Access Lists
The Access List is a collection of all user names, passwords, and Simple Network
Management Protocol (SNMP) community strings that the server uses when
accessing entities, which are stored as configuration items in the database, in
your infrastructure. You have to set up this list for the Configuration Items that
you want to discover.

User names, passwords, and community strings, if needed, are categorized by
each type of device or software application and optionally restricted by scope.
For example, all user names and passwords for all computer systems are stored
as a group, and all user names and passwords for all databases are stored as
another group.

When accessing a device, the server sequentially uses each user name and
password (or community string) in the group across a particular scope (IP
address per subnet) until the device allows the server permission to access it.
For example, when accessing a computer system, the server uses the first user
name and password specified in the Access List for computer systems. If the
user name and password are incorrect for a particular computer system, the

214 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

server automatically uses the next user name and password that are specified in
the Access List for a computer system.

Because you enter a list of user names and passwords (or community strings) for
each type of configuration item, you do not need to specify a user name and
password for a particular configuration item. When you specify all of the user
names and passwords for each type of device, define the scope for each user
name and password pair. The server automatically tries each user name and
password until the correct combination is found. The access list that you create
is stored in the database in an encrypted file.

If the device that you are discovering is an SNMP network element, enter an
SNMP community string in the Community field. If you are using SNMP for a
Cisco device, you must select the SNMP network element and enter an SNMP
community string in the Community field for the Cisco device.

For each Computer System entry in the Access List, you have the option to
specify one of the following authentication types:

� Default
� Password
� Public key infrastructure (PKI)

If you use the default, SSH key-based authentication is attempted first, using the
password for the key passphrase, if required. If key-based authentication does
not succeed, the login name and password authentication is attempted. If
password authentication type is selected, only password authentication is
attempted. Similarly, if PKI is selected, only key-based authentication is
attempted. We recommend that you set the authentication type for the new
Access List entry being added if you know the type. If you do not know the
authentication type, the default behavior can lead to multiple invalid login
attempts that can sometimes result in the account being locked out.

In cases when your system administrator has set up SSH with the login and
password authentication method, start the Product Console with the Establish a
Secure (SSL) Session option enabled before you set up the Access List. This
option encrypts all of the data, including Access List user names and passwords,
before the data is transmitted between the Product Console and the server.

When using the StackScan sensor (Level 1 discovery profile), no Access List is
required.

Note: If you only use the StackScan sensor, you also only get the bare
minimum CI data from the entities in the environment.

 Chapter 6. Discovery scenarios 215

Adding a new Access List
The steps for adding a new Access List entry vary based on the component type
that you want to add. To add a new Access List entry, complete the following
steps from the Product Console:

1. From the menu bar, click Discovery Access List. The Access List pane is
displayed.

2. To add a new entry into the Access List, click Add. The Access Details
notebook is displayed.

3. From the Component Type list, select the component type that you want to
discover.

4. For all component types other than Network Element (SNMP), complete the
following steps:

a. In the Name field, type the name of the Access List entry.

b. In the User name field, type the user name to log in to the component that
you want to discover.

c. In the Password field, type the password to log in to the component that
you want to discover.

d. In the Confirm Password field, retype the password for confirmation.

5. Additional steps might be required based on the component type that you
selected. Table 6-2 on page 217 identifies the component types and the
additional fields and lists that you are required to complete for the Access List
entry.

216 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 6-2 Access details by components

6. To configure the scope limitations, click the Scope Limitations tab. The
Scope Limitations page is displayed.

Component types Fields and lists

Application server, database, messaging
servers

Vendor: The vendor of the server or
database.

Cisco device Enable password: The enable
password for the Cisco device, if you are
using Telnet.

Confirm enable password: The enable
password for the Cisco device, if you are
using Telnet.

The Telnet Cisco sensor requires the
SNMP sensor to be established and
working against the device. If your Cisco
device does not prompt for a user name,
type default in the User name field.

Computer System Management System
(CCMS)

Client ID: The client ID of the SAP
CCMS server.

Network Element (SNMP) Community string: The community
string for the network device.

Confirm community string: Confirm
the community string for the network
device.

The SNMP network element must be
configured to answer queries from the
TADDM Server IP address.

Network Element (SNMPV3) Private password: The password used
if data encryption is set for SNMP.

Confirm private password: The
password used if data encryption is set
for SNMP.

Authentication protocol: The type of
authentication protocol used by SNMP.

 Chapter 6. Discovery scenarios 217

7. On the Scope Limitations page, complete one of the following steps:

– To use the access information across all of the components of the entire
discovery scope, click Entire scope.

– To restrict the application of the specific access information to certain
systems, click Limit to selected scope and then select the scope to which
you want to restrict access.

8. To save the new Access List entry, click OK.

6.1.7 Discovery profiles

A discovery profile is a set of rules that controls how discoveries run. Using
discovery profiles, you can control what TADDM discovers. For example, you
can configure individual discovery sensors, manage various configurations for
the same sensor, select the appropriate sensor based on a set of criteria, and
control sets of different sensor configurations to be applied on a single discovery
run.

By default, there are three levels of discovery profiles, which are described in
Table 6-3.

Table 6-3 Discovery profiles by default in TADDM

Level 1 discovery: IDD StackScan sensor
The Intelligent Device Discovery® (IDD) StackScan sensor provides
credential-less discovery using stack classification for a less intrusive mapping of
the installed operating system and open ports on a computer system. The

Level Type of
discovery

What is discovered

Level 1 credential-less Basic information about active computer
systems: host name, fully qualified domain
name (FQDN), OS release level, IP address,
and open ports. Network operating systems,
such as Cisco and Alteon, are also discovered.
On Windows and zLinux hosts, the Media
Access Control (MAC) address is discovered.

Level 2 OS credentials
only

Detailed information about all of the operating
systems.

Level 3 Full credential Entire application infrastructure: deployed
software components, physical servers, network
devices, virtual LANs, and hosts.

218 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

StackScan sensor can collect the type of operating system, the active IP
interfaces, and the open ports without access credentials.

The StackScan sensor labels each discovered computer system with a
confidence level for the operating system. If the discovered operating system
confidence level is higher than a threshold, the computer system is displayed
under the appropriate operating system category. If the operating system
confidence level is lower than the threshold, the operating system is modeled as
a general computer system. The threshold is configured between 0 - 100. You
can set the threshold by using the confidenceThreshold sensor configuration
attribute.

To enable and disable the StackScan sensor and to set the confidenceThreshold
attribute, use a discovery profile.

The IDD StackScan sensor is not supported when the TADDM Server is running
on an AIX operating system. There is no reliable Nmap version available. For
supported Windows operating systems, the StackScan sensor needs raw socket
support enabled on the operating system (for example, Windows Server 2003)
where the TADDM Server is running. If the operating system does not provide
raw socket support, the StackScan sensor cannot work, and data collection does
not occur.

Configuring sudo access control
The StackScan sensor requires sudo access control to collect discovery
information. For Windows operating systems, sudo access control is not needed.

Note: IDD is an asset discovery and inventory tool for hardware and software
in a heterogeneous, unknown systems, and networking enterprise
environment. It was developed by IBM Zurich Labs. The StackScan sensor is
the TADDM implementation of IDD.

Note: The StackScan sensor is enabled by default in all discovery profiles.

Note: Raw sockets are required to construct packets to send to remote hosts
for reading the TCP stack and determining the operating system type. If
absent, the sensor cannot formulate and send that information. If you do not
know if you have raw socket support, check the Web site or support site for
your operating system to determine if the raw socket support is enabled.

 Chapter 6. Discovery scenarios 219

To configure sudo access, complete the following steps for anchor hosts and
TADDM Servers for other operating systems:

1. At a command prompt window, run the su command to switch to root authority
on the local host.

2. Enter the visudo command.

3. Type the following line under User privilege specification:

cmdbadmin ALL=(ALL) NOPASSWD:ALL

The cmdbadmin is the non-root user ID that is used by the TADDM Server.

The output looks similar to Figure 6-7.

Figure 6-7 Configuring sudo access

Installing Nmap
If you use the StackScan sensor, the use of Nmap is optional. If you want to
increase the accuracy of your results, use Nmap.

Nmap is an open source network exploration tool and security scanner. When
using the StackScan sensor, install Nmap as a part of the Tivoli Application
Dependency Discovery Manager installation process.

220 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Nmap must be installed in the same operating system where your TADDM
Server is installed. If you use an anchor server, Nmap must be installed on the
anchor server, too.

To download the latest version of Nmap for your specific operating system, go to:

http://nmap.org/download.html

In our lab environment, we used Nmap 4.20 for Linux. We installed Nmap
following the installation steps from:

http://nmap.org/book/install.html

When your Nmap installation is done, run the following command to validate the
installation before proceeding with any tasks:

nmap -v -sS -O <Target IP Address>

The output must not contain any errors; for example, refer to Example 6-3.

Example 6-3 Executing Nmap after install

nmap -v -sS -O 9.3.5.22

Starting Nmap 4.20 (http://insecure.org) at 2008-04-24 12:30 CDT
Initiating ARP Ping Scan at 12:30
Scanning 9.3.5.22 [1 port]
Completed ARP Ping Scan at 12:30, 0.01s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 12:30
Completed Parallel DNS resolution of 1 host. at 12:30, 0.00s elapsed
Initiating SYN Stealth Scan at 12:30
Scanning newyork.itsc.austin.ibm.com (9.3.5.22) [1697 ports]
Discovered open port 3389/tcp on 9.3.5.22
Discovered open port 445/tcp on 9.3.5.22
Discovered open port 139/tcp on 9.3.5.22
Discovered open port 22/tcp on 9.3.5.22
Discovered open port 5900/tcp on 9.3.5.22
Discovered open port 1025/tcp on 9.3.5.22
Discovered open port 135/tcp on 9.3.5.22
Discovered open port 5800/tcp on 9.3.5.22
Completed SYN Stealth Scan at 12:30, 1.37s elapsed (1697 total ports)
Initiating OS detection (try #1) against newyork.itsc.austin.ibm.com
(9.3.5.22)
Retrying OS detection (try #2) against newyork.itsc.austin.ibm.com
(9.3.5.22)
Retrying OS detection (try #3) against newyork.itsc.austin.ibm.com
(9.3.5.22)

 Chapter 6. Discovery scenarios 221

http://nmap.org/book/install.html
http://nmap.org/download.html

Retrying OS detection (try #4) against newyork.itsc.austin.ibm.com
(9.3.5.22)
Retrying OS detection (try #5) against newyork.itsc.austin.ibm.com
(9.3.5.22)
Host newyork.itsc.austin.ibm.com (9.3.5.22) appears to be up ... good.
Interesting ports on newyork.itsc.austin.ibm.com (9.3.5.22):
Not shown: 1689 closed ports
PORT STATE SERVICE
22/tcp open ssh
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
3389/tcp open ms-term-serv
5800/tcp open vnc-http
5900/tcp open vnc
MAC Address: 00:11:25:06:F5:5D (IBM)
No exact OS matches for host (If you know what OS is running on it, see
http://insecure.org/nmap/submit/).
TCP/IP fingerprint:
OS:SCAN(V=4.20%D=4/24%OT=22%CT=1%CU=32480%PV=N%DS=1%G=Y%M=001125%TM=481
0C3D
OS:4%P=i686-redhat-linux-gnu)SEQ(SP=106%GCD=1%ISR=107%TI=I%II=I%SS=S%TS
=0)S
OS:EQ(SP=106%GCD=1%ISR=106%TI=I%II=I%SS=S%TS=0)SEQ(SP=106%GCD=1%ISR=107
%TI=
OS:I%II=I%SS=S%TS=0)OPS(O1=M5B4NW0NNT00NNS%O2=M5B4NW0NNT00NNS%O3=M5B4NW
0NNT
OS:00%O4=M5B4NW0NNT00NNS%O5=M5B4NW0NNT00NNS%O6=M5B4NNT00NNS)WIN(W1=4000
%W2=
OS:4000%W3=4000%W4=4000%W5=4000%W6=4000)ECN(R=Y%DF=N%T=80%W=4000%O=M5B4
NW0N
OS:NS%CC=N%Q=)T1(R=Y%DF=N%T=80%S=O%A=S+%F=AS%RD=0%Q=)T2(R=Y%DF=N%T=80%W
=0%S
OS:=Z%A=S%F=AR%O=%RD=0%Q=)T3(R=Y%DF=N%T=80%W=4000%S=O%A=S+%F=AS%O=M5B4N
W0NN
OS:T00NNS%RD=0%Q=)T4(R=Y%DF=N%T=80%W=0%S=A%A=O%F=R%O=%RD=0%Q=)T5(R=Y%DF
=N%T
OS:=80%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=N%T=80%W=0%S=A%A=O%F=R%O=
%RD=
OS:0%Q=)T7(R=Y%DF=N%T=80%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(R=Y%DF=N%T=80%
TOS=
OS:0%IPL=B0%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G)IE(R=Y%DFI=S%T
=80% OS:TOSI=Z%CD=Z%SI=S%DLI=S)

222 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Network Distance: 1 hop
TCP Sequence Prediction: Difficulty=262 (Good luck!)
IPID Sequence Generation: Incremental

OS detection performed. Please report any incorrect results at
http://insecure.org/nmap/submit/ .
Nmap finished: 1 IP address (1 host up) scanned in 11.224 seconds
 Raw packets sent: 1898 (87.080KB) | Rcvd: 1778(84.224KB)

Running StackScan discovery
Now, we can run the StackScan discovery in our lab environment. Follow these
steps:

1. Open the TADDM console.

2. The Level 1 profile includes, by default, SnmpLightSensor, but we do not
want to execute it. So, we need to create a new discovery profile that is based
on the Level 1 profile:

a. Go to Discovery Discovery Profiles and click New. You see the next
panel (Figure 6-8).

b. Enter the profile name, description, and profile that you want to clone, as
shown in Figure 6-8, and click OK.

Figure 6-8 Creating a new discovery profile

c. In the Discovery Profile list, you see the profile that you have just created.
Highlight it, and remove the check mark from SnmpLightSensor
(Figure 6-9 on page 224).

 Chapter 6. Discovery scenarios 223

Figure 6-9 Deselecting SnmpLightSensor

d. Finally, click Save.

3. Click Discovery Overview, and click Run Discovery. Figure 6-10 on
page 225 appears.

4. Check ITSO Lab under Scopes, and select Custom Level 1 Discovery from
the Profile list box. Click OK.

224 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-10 Executing StackStan discovery

5. Our discovery process runs. The amount of time that the discovery takes to
complete depends on the number of machines included in our defined scope.
You can follow the status by selecting Discovery Overview (Figure 6-11
on page 226).

 Chapter 6. Discovery scenarios 225

Figure 6-11 Checking the discovery status

6.1.8 Level 2 profile

You use this profile to discover detailed information about the active computer
systems in the runtime environment. A Level 2 discovery discovers each
computer system in your runtime environment, as well as running a detailed
discovery of the operating system on each computer system. It requires that
access credentials have been entered for each computer system in the runtime
environment.

You can use the Level 2 profile to enable shallow discovery of applications that
are running on a target system by using only the system credentials by adding
the following property to the collation.properties file:

com.collation.internalTemplatesEnabled=true

If this property is set to true, you receive a CustomAppServer object representing
the application running on the target machine. You do not need to provide
application credentials to enable this property.

226 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

In our environment, we have already run the Level 1 StackScan. Therefore, we
use the results of the Level 1 StackScan to feed into our new Level 2 scopes,
which will help us to run Level 2 discoveries more quickly and effectively:

1. First, we create new scopes to help us run the Level 2 discovery. Follow
these steps to create one scope set for each operating system that was
discovered by the StackScan sensor:

a. Click Analytics Inventory. Check all of the operating systems that
were discovered (in our case, we use AIX, Linux, Sun SPARC, and
Windows) by StackScan, and click Run Report. You can check the
Systems Tier to see which Operating Systems have been discovered.

b. Now that you have the report’s results, save these results to a
comma-separated values (csv) file.

c. Click Save, choose a name for the file (for example, ScanStack), and leave
csv as the file type. Click Save.

d. You have as many files as you have types of operating systems; in our
case, we have four files.

e. Copy these csv files to the TADDM Server machine.

f. After the csv files are in the TADDM Server, we need to change them
slightly to be able to import them as our new scopes. Use Example 6-4 to
make the changes.

Example 6-4 Preparing csv files to import Level 2 Scopes

cat StackScan_AIX_Unitary_Computer_System.csv | tr '"' ' ' | awk
'{print $3,$1}' | grep -v "IP Name" | while read name ip; do echo
$name,,$ip >> AIXMachines.scope; done

g. Repeat the same changes for all of your csv files.

h. Now, we have our .scope files ready to import by using the loadscope.jy
command (Example 6-5).

Example 6-5 Listing scope files to import

$ ls -l *scope
-rw-r--r-- 1 cmdbadmin cmdbadmin 836 Apr 24 19:23
AIXMachines.scope
-rw-rw-r-- 1 cmdbadmin cmdbadmin 1293 Apr 24 19:24
LinuxMachines.scope
-rw-rw-r-- 1 cmdbadmin cmdbadmin 29 Apr 24 19:25
SunMachines.scope
-rw-rw-r-- 1 cmdbadmin cmdbadmin 1894 Apr 24 19:25
WindowsMachines.scope

 Chapter 6. Discovery scenarios 227

i. Change the directory to $COLLATION_HOME/bin and use the
loadscope.jy command to import the new scopes as shown in
Example 6-6.

Example 6-6 Importing the new scopes

[cmdbadmin@waco bin]$./loadscope.jy -d -u administrator -p
collation -s "AIX Machines" load
/home/cmdbadmin/StackScanResultFiles/AIXMachines.scope

Processing: 9.3.5.44,,istanbul.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.45,,paris.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.111,,lpar01.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.117,,lpar07.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.196,,server3.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.197,,server4.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.208,,keyworth.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.57,,milan.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.54,,rome.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.108,,9.3.5.108
Successfully parsed
Processing: 9.3.5.203,,bari.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.205,,nottingham.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.143,,kramer_vio.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.173,,guadalupe.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.174,,brazos.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.175,,trinity.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.170,,nimrod.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.172,,nueces_vio.itsc.austin.ibm.com

228 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Successfully parsed
Processing: 9.3.5.72,,madrid.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.73,,elpaso.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.127,,lpar15.itsc.austin.ibm.com
Successfully parsed
Processing: 9.3.5.33,,sydney.itsc.austin.ibm.com
Successfully parsed
DEBUG--> XML stored in /tmp/tmp3loadscope.xml

j. Repeat the previous step with all of your scope files. Then, select
Discovery Scope to verify your loaded scopes. For more details, refer
to “Discovery scope” on page 210.

k. Check your loaded scopes.

2. Now that we have created the scopes, we can create the Access Lists. For
more information, refer to “Access Lists” on page 214. Follow these steps:

a. In our case, we create an Access List for each scope set that was created.
Figure 6-12 shows the Access Lists that we created.

Figure 6-12 Access Lists

3. Next, select Discovery Overview, and click Run Discovery. A new
window appears. Check that your new scopes were created for Level 2
discovery. Then, select Level 2 Discovery under the Profile list box, and click
OK (Figure 6-13 on page 230).

 Chapter 6. Discovery scenarios 229

Figure 6-13 Selecting scopes for Level 2 discovery

In order to check for any errors during the Level 2 discovery, refer to Chapter 9,
“Troubleshooting” on page 367.

Level 3 discovery
You can use Level 3 discovery to discover the entire application infrastructure,
deployed software components, physical servers, network devices, virtual LANs,
and host data that is used in a runtime environment. Just as with a Level 2
discovery process, Level 3 discovery requires that full credentials are defined for
all required computer systems and applications. For example, unlike L2
discovery, you need to provide the application credentials (such as for
WebSphere Application Server) in L3 discovery.

6.2 Customizing and managing discoveries

In this section, we discuss how to customize and manage discoveries.

230 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.2.1 Custom servers

You can create custom servers to discover and categorize servers that are not,
by default, supported by TADDM. Creating custom servers is an advanced
technique for configuring TADDM to discover software application servers that it
does not know about by default.

Your infrastructure might contain software applications and server types, such as
custom Java servers, that are not automatically categorized by TADDM. Any
server process with a TCP listening port that is not recognized is categorized into
an Unknown Server category. Unknown servers are not displayed in the topology
and cannot take advantage of most of the functions. You do, however, receive
basic information, such as the name and the runtime data of the unknown server.

You can define a custom server to create a template that sets up the membership
rules for the custom server. During a discovery, any unknown server is
automatically categorized as a custom server of this type if the runtime
information matches the criteria that you have defined in the template. Any
configuration files that are used by the custom server are also automatically
captured if specified in the templates. Custom servers are displayed in the
topology, and you can view details about them. Although these details are not as
complete as those details provided for supported servers, defining custom
servers allows all of the components in your infrastructure to participate in the
topology and comparisons. You can manage custom servers by selecting
Discovery Custom Servers.

Several primary reasons that custom server templates are important in the use of

TADDM include:

� Categorizing running software on a computer system

� Suppressing extraneous software servers from the topology

� Collecting configuration files from all computer systems of a certain type

� Populating a business application with the software that is matched by
specific custom server templates

Table 6-4 on page 232 describes the information that is presented in the Custom
Servers panel.

 Chapter 6. Discovery scenarios 231

Table 6-4 Custom server information

Identifying unknown server patterns
Before adding a server, run a basic discovery to check for unknown servers. You
can run a report on unknown servers to help you identify patterns to use in the
custom server template.

To identify patterns in unknown servers, click Analytics Inventory, and the
Inventory pane is displayed in the workspace. Then, select Unknown Servers,
and click Run Report.

You can identify a pattern in the configuration of the unknown server, such as the
program name, arguments, environment, and port. Use this pattern to create the
identifying criteria for the custom server template.

In our environment, we use sendmail to create a new custom server. We
highlight sendmail and click Create Custom Server (Figure 6-14 on page 233).

Field Description

Enabled Specifies whether the custom server is to be
included in the discovery. Values are true or false.

Icon The icon associated with the custom server.

Name The name of the custom server.

Type The type of custom server:
AppServer
J2EE Server
Web server
Database Server

Action The action to perform during the discovery:
Discover: Include in the discovery.
Ignore: Do not include in the discovery.

Config Files The path to the configuration files with which the
custom server is associated.

232 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-14 Identifying unknown server patterns

Adding custom servers
A custom server template contains descriptive criteria that are used to assign
unknown server processes to the custom server. You specify this criteria when
defining the template for the custom server.

The following information associated with running processes is parsed to match
the process to a particular custom server:

� Program name: The name of the executable program

� Window Service name: The name of a window service

� Argument: The arguments passed to the program

� Environment: The environment variables set for the program

� Port: The TCP port number on which the process is listening

The custom server general information and criteria details include the name, the
type of server, and the identifying criteria for the custom server. To view details
about a specific unknown server, double-click the unknown server in the
Topology, and click the Runtime tab.

You can then use this information to create search criteria for a custom server
using the General Info & Criteria tab of the Custom Server Details window.

 Chapter 6. Discovery scenarios 233

To add a custom server, complete the following steps from the Product Console:

1. In the Functions pane, click Discovery Custom Server, and click Add
from the Custom Servers pane. Use this step to create a new custom server
from the beginning. If you want to create a new custom server from an
unknown server, refer to “Identifying unknown server patterns” on page 232.

2. The Custom Server Details panel is displayed.

3. In the Name field, type the name of the custom server. In our lab, we used
Sendmail - e-mail server.

4. From the Type list, select the type of custom server that you are adding. We
selected AppServer.

5. Under Action, complete one of the following steps:

– Click Discover if you want to discover all instances of the server.

– Click Ignore if you want to suppress the discovery of all instances of the
server.

6. To enable the custom server definition, select Enabled.

7. To select an icon to associate with the custom server, click Browse and
select the icon that you want to use.

8. Under Identifying Criteria, complete one of the following steps:

– To match all of the identifying criteria, click All Criteria.

– To match any of the identifying criteria, click Any Criteria.

9. Define the criteria for the custom server. If you are creating a custom server
from an unknown server, you will see at least one criterion that is set up.
Figure 6-15 on page 235 shows our example.

234 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-15 Creating a custom server

10.To add configuration files, click the Config Files tab. The Config Files page is
displayed.

11.On the Config Files page, click Add. The Search Path for Capture File
window is displayed.

12.From the Type list, select one of the file types to capture:

– Config File

– Software Module

– Application Descriptor Directory/File

13.From the Search Path list, select one of the following search paths for the
configuration file:

– /, which is the root of the file system

– $PWD, which is the current working directory of the running program

– $Home, which is the home directory of the user ID of the running program

– C:, which is a directory on your local computer

 Chapter 6. Discovery scenarios 235

– %ProgramFiles%, which is the program files directory

– %SystemRoot%, which is the system root directory

14.To capture the contents of the configuration file, click Capture file contents,
and optionally, specify the maximum number of bytes of the captured
configuration file.

15.To recurse through the directory structure to search for the specified file, click
Recurse Directory Content.

16.To save the settings for your custom server, click OK. Refer to Figure 6-16.

Figure 6-16 Selecting config files

Repositioning custom server entries
You can change the order in which custom servers are listed in the Custom
Servers pane. The list order is important, because template matching is applied
from top to bottom in the custom server list and stops at the first match. For
example, a more generic template matches all servers of a specific type, and a
more specific template matches only servers that have a specific string
argument. After a server is matched to a server category, the custom server is
removed from the unknown server list. A server cannot be a member of more

236 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

than one category at the same time, even if the server matches criteria from
several custom servers in the list. Changing the order of the list can cause the
server process to match to a different custom server.

To reposition entries in the Custom Servers pane, complete the following steps
from the Product Console:

1. In the Functions pane, click Discovery Custom Servers. The Custom
Servers pane is displayed in the workspace.

2. In the Custom Servers pane, select the custom server that you want to
reposition and complete one of the following steps:

a. To move the server up in the entry list, click Move Up.

b. To move the server down in the entry list, click Move Down.

Now, we can run a new discovery and check our new custom server that we
have just created. Refer to 6.1.8, “Level 2 profile” on page 226 for more detail
about how to run discoveries. After the new discovery is finished, check the
results by clicking Topology Application Infrastructure (Figure 6-17).

Figure 6-17 Sendmail custom server discovered

 Chapter 6. Discovery scenarios 237

If you want to see more details, right-click in the discovered component and click
Show Details. You can see all of the information related to the component,
including the configuration file.

6.2.2 Custom server extensions

Creating a custom server template for an application also enables TADDM to
subsequently display it as part of the topology. You can view details about the
application, including the listening port, runtime information, and any config files
or application descriptors that were collected.

In certain cases, this information might not be sufficient. For example, you might
also need to access the product version. By default, TADDM is unable to collect
version information for arbitrary custom server applications.

TADDM enables you to extend custom server templates to collect additional
information, as required, using the following approaches:

� Execute commands on the target system to populate any attribute in the
Common Data Model for the component. You can use this approach to set
the productVersion attribute, for example.

� Execute commands on the target system and store the result as a config file
for the component. One common use of this approach is to extract
information from the Windows Registry.

� Execute a Jython script on the TADDM Server, which enables you to change
any information about a component. The difference between this approach
and the first approach is where the code executes.

After you have created the custom server, in order to extend it, you have to
create a directive file that contains the commands to execute. You can add
commands and scripts to the directive file, as required.

Use the format described in Table 6-5 on page 239 when specifying commands
in the directive file.

Keep commands as simple as possible. If the command stops during execution,
the sensor times out, and the component is not discovered.

The directive file must have the same name as the custom server template and
must be stored in this directory: $COLLATION_HOME/etc/templates/commands.
TADDM triggers directives in this directory by using the name of the custom
server template.

238 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 6-5 Directive file format

Executing commands to populate the Common Data Model
You can execute commands on a target system to populate attributes in the
Common Data Model. We used a command to store the sendmail version
running in the ITSO lab machines. Therefore, you can use the following
command to extract the version string (Example 6-7).

Example 6-7 Querying sendmail version

$ sendmail -d0.1 -bt < /dev/null | grep Version | awk '{print $2}'
8.13.1
$

Directive Description

CMD:variable=
path/command

Enables you to define an in-line command. For example:

CMD:productVersion=/usr/sbin/postconf |awk
'/^mail_version/ {print $3}'

You must always specify absolute paths to commands,
and you must use quotation marks (') around commands
or arguments containing spaces.

You can use environment variables associated with the
process, specified by $VARIABLE$.

CMD:NOP=
path/command

Enables you to execute the command without assigning
results to a variable. For example:

CMD:NOP=reg export HKLM\Software
Microsoft\InetStp c:\windows\temp\ iis.reg /y

CMD:CONFCONTEN
filename=path/command

Enables you to execute a command and store the results
in the custom configuration file specified by file name. For
example:

CMD:CONFCONTENT.iisREG=cmd.exe /c type
c:\windows\temp\iis.reg

SCRIPT: path/script Enables you to invoke Jython (.py) scripts. For example:

SCRIPT:path/command.py

When the path starts with "/" TADDM assumes an
absolute path; otherwise, the path is relative from
$COLLATION_HOME.

 Chapter 6. Discovery scenarios 239

To have TADDM execute the command, create a directive file that is stored in
$COLLATION_HOME/etc/templates/commands/Sendmail that contains the
following line as described in Example 6-8.

Example 6-8 Directive file for Sendmail custom server

$ vi Sendmail
CMD:productVersion=sendmail -d0.1 -bt < /dev/null | grep Version | awk
'{print $2}'

When that command creates the directive file, we execute a new discovery.
Populating an attribute in the Common Data Model does not make it appear in
the Product Console Details pane for the component. The attribute is, however,
stored in the database and can be retrieved using the TADDM SDK, which is
described in Example 6-9.

Example 6-9 Querying updated Sendmail version

$./api.sh -u administrator -p collation find "select * from AppServer
where objectType starts-with 'Sendmail'" > Sendmail.xml

Finally, open the xml that was generated by the api.sh tool, and check the
results. You see an output similar to Figure 6-18 on page 241.

240 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-18 Checking updated product version

If you want to see this new field in the TADDM administration console, you need
to edit the $COLLATION_HOME/etc/detail/screencontent.xml file and add a new
section as shown in Example 6-10.

Example 6-10 Editing the screencontent.xml file

......
<tableContent
className="com.collation.platform.model.topology.app.AppServer"
name="AppServer.General">
 <field>
 <plain fieldName="displayName"/>
 </field>
 <!-- Lines added to see our product version -->
 <field>
 <plain displayName="Version"
fieldName="productVersion"/>
 </field>
 <!-- End -->
......

 Chapter 6. Discovery scenarios 241

After you change the screencontent.xml file, restart the TADDM Server, and then
go to the Product Console to see the details of the discovered Sendmail custom
server. Your custom server is similar to Figure 6-19.

Figure 6-19 Checking updated product version using TADDM Product Console

Executing commands to create a custom configuration file
You can execute commands on a target system and store the results in a custom
configuration file. Saving the results in a custom configuration file enables you to
access the information using the Product Console.

In order to continue with our previous example, we added a new line in the
Sendmail file that is located in $COLLATION_HOME/etc/templates/commands
(Example 6-11).

Example 6-11 Adding the command to create a configuration file

$ cat Sendmail
CMD:productVersion=sendmail -d0.1 -bt < /dev/null | grep Version | awk
'{print $2}'
CMD:CONFCONTENT:SendmailVersion=sendmail -d0.1 -bt < /dev/null

After you run a new discovery, click Topology Application Infrastructure,
right-click Sendmail custom server, and click Show Details. Then, under the
Config files tab, click Sendmail/SendmailVersion to see the result (a new
panel similar to Figure 6-20 on page 243.

242 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-20 New Config File added

Executing Jython scripts
You can invoke Jython (.py) scripts on a target system. TADDM automatically
detects the script language and passes the context of the custom server or
computer system to the scripting language using a hashmap. This function
enables Jython to manipulate Java objects.

The hashmap, also called targets, has predefined objects that can be used by
the script for processing and for passing back results.

For custom servers, targets contain:

� Result: The CustomAppServerResult objects

� Seed: The CustomAppServerSeed object

� Environment: The environment variables hashmap

� Osobject: The osobject (which can be used to execute remote commands)

For custom systems, targets contain:

� Result, seed, and osobject as in custom servers

� System: The ComputerSystem

� Contentarray: The ComputerSystem ConfigContent

 Chapter 6. Discovery scenarios 243

For example, you can execute the Jython script myscript.py by including the
following command in the directive file:

SCRIPT:myscript.py

6.2.3 Computer system templates

You use computer system templates for the same purpose as custom server
templates. Also, you can use computer system template extensions in the same
manner that you use custom server template extensions.

In this section, we include procedures for adding and copying computer system
templates. These procedures are similar to custom server procedures and are
based on the same concept.

Computer system templates are an advanced technique for configuring TADDM
to collect additional configuration files from specific computer system types.

Adding computer system templates
To add a computer system template, complete the following steps from the
Product Console:

1. In the Functions pane, click Discovery Computer Systems. The
Computer Systems pane is displayed in the workspace.

2. In the Computer Systems pane, click Add. The Computer System Details
notebook is displayed.

3. In the Name field, type the name of the computer system.

4. To enable the discovery of the computer system template, click Enabled.

5. To select an icon to associate with the computer system template, click
Browse and select the icon that you want to use.

6. Under Identifying Criteria, select the type of operating system to associate
with the computer system template.

7. To add configuration files, click the Config Files tab.The Config Files page is
displayed.

8. On the Config Files page, click Add. The Search Path for Capture File
window is displayed.

9. From the Type list, select one of the file types to capture:

– Config File

– Software Module

– Application Descriptor Directory/File

244 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

10.From the Search Path list, select one of the following search paths for the
configuration file:

– /, which is the root of the file system.

– $PWD, which is the current working directory of the running program

– $Home, which is the home directory of the user ID of the running program

– C:, which is a directory on your local computer

– %ProgramFiles%, which is the program files directory

– %SystemRoot%, which is the system root directory

11.To capture the contents of the configuration file, click Capture file contents,
and optionally, specify the maximum number of bytes of the captured
configuration file.

12.To recurse through the directory structure to search for the specified file, click
Recurse Directory Content.

13.To save the settings for your computer system, click OK.

Copying a computer system template
You can create a new computer system template that is based on an existing
computer system template by copying a template listed in the Computer Systems
pane and issuing it a unique name.

To copy a computer system template, complete the following steps from the
Product Console:

1. In the Functions pane, click Discovery Computer Systems.The
Computer Systems pane is displayed in the workspace.

2. In the Computer Systems pane, select the template that you want to copy and
click Copy. The Set Name window is displayed.

3. In the Name field, type the name for the new template.

4. To save the new template, click OK.

Repositioning computer system template entries
You can change the order in which computer system templates are listed in the
Computer Systems pane. The list order is important, because template matching
is applied from top to bottom in the template list and stops at the first match. For
example, a more generic template matches all servers of a specific type, and a
more specific template matches only servers that have a specific string
argument.

 Chapter 6. Discovery scenarios 245

To reposition entries in the Computer Systems pane, complete the following
steps from the Product Console:

1. In the Functions pane, click Discovery Computer Systems. The
Computer Systems pane is displayed in the workspace.

2. In the Computer Systems pane, select the template that you want to
reposition and complete one of the following steps:

– To move the template up in the entry list, click Move Up.

– To move the template down in the entry list, click Move Down.

6.2.4 The bulkload program

The Tivoli collection of books that can load TADDM with data from other Tivoli
products can be found in the IBM Tivoli Open Process Automation Library
(OPAL) at:

http://catalog.lotus.com/wps/portal/tccmd

The bulkload program (the loadidml.sh script) loads Discovery Library books
into the Domain Database.

The loadidml.sh script reads the books, imports the data into the Domain
Database, and logs the results in the results directory for the bulkload program.
In addition, the bulkload program logs error messages in the
$COLLATION_HOME/log/bulkloader.log file.

To ensure data consistency, only one bulkload program can run at a time. The
bulkload program is designed to be run at the TADDM Server. To ensure proper
authorization, the bulkload program must be run by the same user ID that runs
the TADDM Server processes.

All of the directories that you use to store log files and results files must exist
prior to running the bulkload program. You can customize these directories by
modifying the configuration settings that are defined in the
$COLLATION_HOME/etc/bulkloader.properties file.

246 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://catalog.lotus.com/wps/portal/tccmd

The following list describes the properties in the bulkloader.properties file and its
default values. You must not change anything in the file if you want to accept the
defaults:

� com.ibm.cdb.bulk.workdir=bulk: This directory is the directory that the
bulkload program uses to copy files before loading them. See the "-c" option
and com.ibm.cdb.bulk.createworkingcopy property. The default directory is
relative to the top-level directory of the directory referenced by the
$COLLATION_HOME environment variable. This variable is usually
/opt/IBM/cmdb/dist.

The International Development Markup Language (IDML) file to be loaded
cannot reside in this directory; otherwise, the file fails to load.

� com.ibm.cdb.bulk.workdir.cleanup=false: Specifies whether the working
directory must be cleaned up after the load completes.

� com.ibm.cdb.bulk.processedfiles.cleanup=30: Number of days to keep
files in the processed files list.

� com.ibm.cdb.bulk.retrycount=5: Number of times to retry loading a file if a
discovery is currently in progress.

� com.ibm.cdb.bulk.retrydelay=600: Number of seconds in between retries
while a discovery is in progress.

� com.ibm.cdb.bulk.resultsdir=bulk/results: Directory to write the results
files created during the load of a file. The default directory is relative to the
top-level directory referenced by the $COLLATION_HOME variable. This
variable is usually /opt/IBM/cmdb/dist.

� com.ibm.cdb.bulk.stats.enabled=false: Whether statistics gathering of the
bulkload program is performed. Turning on statistics decreases performance
and increases log and results file sizes.

� com.ibm.cdb.bulk.log.success.results=true: Whether successfully written
objects are logged into the results file. Reduced logging can improve
performance by reducing output.

� com.ibm.cdb.bulk.cachesize=200: Number of objects to be processed in a
single write operation when performing graph writing. Increasing this number
improves performance at the risk of running out of memory either on the client
or at the server. Only alter the number when specific information is available
to indicate that processing a file with a larger cache provides benefit in
performance.

� com.ibm.cdb.bulk.createworkingcopy=true: First, copy the IDML source
file to the bulk directory and then continue to process the copied file.

 Chapter 6. Discovery scenarios 247

Running the bulkload program
To run the bulkload program, complete the following steps:

1. Check the $COLLATION_HOME/etc/bulkloader.properties file for
accuracy.You do not need to change anything in the file if you want to accept
the defaults.

2. Verify that the working directory and the results directory that are mentioned
in the bulkloader.properties file are valid.

The directories must be created using the same user account that starts and
stops the TADDM Server. If the bulkload program does not have permissions
to read and write from the working and results directories, the bulkload
program cannot run.

3. Run the bulkload program, using the following command (flag descriptions
are in Table 6-6):

./loadidml.sh -f <path_to_idml_file> -h <host name> -u <userid>
-p <passwd> -g -c -o -b <bidirectional format on or auto>

Table 6-6 Reference for the loadidml.sd command

Option Description

-f <path_to_idml_file> Specifies the fully qualified path to the input file or a
directory that contains input XML files. The directory
where the input file is placed must not be the same as
the working directory of the bulkload program. If a
shared directory is used to stage the input file, or, if files
are copied to a local directory, the directory where input
files are staged cannot be the same as the working,
results, or log directory of the bulkload program. This is
a requirement.

-h <host name> Specifies the host name of the TADDM Server. This is
usually not required.

-u <userid> Specifies the user ID to be used to authenticate with the
TADDM Server. This is usually not required.

-p <password> Specifies the password used to authenticate with the
TADDM Server. This is usually not required.

-o Instructs the bulkload program to override the
processed files file and load the IDML files.

-b Specifies if bidirectional support is enabled, disabled, or
automatically configured.

-g Specifies to use the graph writing algorithm to persist
data into the database.

248 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

For more information about loadidml.sh options, refer to the Tivoli
Application Dependency Discovery Manager User’s Guide, Version 7.1 at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ib
m.taddm.doc_7.1/cmdb_user.pdf

4. After the bulkload program runs, check the results file for problems that might
have occurred during the bulkload program run. The results file is located in
the resultsdir directory that is configured in the bulkloader.properties file.

Look for a file with a results extension and the same name as the IDML. If, for
example, the name of the imported IDML file is test.xml, the name of the
results file is test.results. Important entries in this file are marked with
SUCCESS and FAILURE tags. “Percentage successful” messages are also
recorded if statistics are enabled. FAILURE tags are for individual objects and
do not necessarily indicate a failure of the entire file.

5. To process the same book again after the first initial load, either use the -o
flag or remove the specific entry from the processedfiles.list file. The
processedfiles.list file is located in the working directory that is specified in the
bulkloader.properties file.

6. If the bulkload program indicates another bulkload program is running, and
you know this is not the case, go to the working directory and delete the
.bllock file and run the bulkload program again. The .bllock file is a hidden file
on UNIX systems, because it starts with a period. Only delete this file if you
are sure that another bulkload program is not already running.

Also, you need to read the information in the bulkload.log file. The log file can
contain details about messages that are displayed.

Best practices for using the bulkload program
There are two approaches to controlling the order in which multiple input files
from a directory are loaded. One option is to load each file individually, loading
the files in the correct order. This approach might be necessary if the only
difference between the file names is a time stamp in the file name. A second
approach is to alter the names of the files to include alphabetic ordering strings.
These ordering strings are then defined to the bulkload program using the
processOrder.list file. The processOrder.list file does not exist until you manually
create it. The bulkload program processes files that match the first ordering string
first, the second ordering string second, and so forth. If more than one file

-c Specified to copy the IDML source files to the working
bulk directory and process them there. This might lead
to delays when copying large files.

Option Description

 Chapter 6. Discovery scenarios 249

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ibm.taddm.doc_7.1/cmdb_user.pdf

matches the same ordering string, a processing order within that group is not
ensured.

For refresh files, typically only the latest refresh file needs to be loaded. For
refresh and delta files, the refresh file is typically loaded first, and then, the delta
files are loaded in the sequence in which they were generated. For just delta
files, they need to be loaded in the sequence in which they were generated.

A shared directory that is used for input files must be properly maintained.
Loaded input files must be removed from the shared directory before they are
expired from the processed list file. If a file remains in the directory after being
expired from the processed list, it is reloaded, perhaps loading older data.

6.3 Reconciliation and prioritization

The attribute prioritization feature allows you to prioritize sources of data by
defining rules that describe which data sources take priority over other data
sources when updating Configuration Item (CI) attributes.

Data for CIs can be supplied to TADDM from multiple sources. The multiple
sources can include a variety of sensors, the Product Console, the API, or
Discovery Library Adapters (DLAs). You might trust the data from one source
more than the data from another source. You might trust different pieces of
information from different data sources for the same CI.

Attribute prioritization consists of two concepts: data sources and priority rules:

� Data sources are abstract definitions of data providers, including sensors,
which write data into the TADDM Database. Data sources are the building
blocks of priority rules.

� A priority rule is a simple, ordered list of data sources.

You must follow these rules for prioritizing your CI attributes:

� Prioritization takes place only when data is written and does not affect
existing data.

� Prioritization is done between data sources loading data into a single
Configuration Management Database (CMDB). Cross-domain data, such as
data combined at the Enterprise Configuration Management Database
(eCMDB), is not covered.

� For consistent results, you need to define the priority rules when data is not
being loaded into the TADDM Database.

250 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� You only need to define the data sources for providers of data that needs to
be prioritized. A provider of CI data, which does not need to be prioritized,
does not need a data source definition in order to save the data into TADDM.

� You must only define new data sources and priority rules when the system is
“quiet”. Defining new priority rules while a discovery is running changes the
priority rules halfway through the discovery.

� Data sources and priority rules can be defined before or after data from a
particular source is loaded into the TADDM Database. Deleting a data source
does not affect data in the database and does not affect the ability of a data
provider to write new data to the database.

� Priority rules for data sources can be defined for the entire class or on an
individual attribute for a class. You must choose between class level and
attribute level prioritization, because you cannot use both class level and
attribute level prioritization at the same time on a single CI class:

– Priority rules can be changed after definition from class level to attribute
level or attribute level to class level for a particular CI class.

– Changing priority rules or priority levels alters the definitions immediately
in the TADDM Database. As the new rules are applied to incoming data,
there can be a latency period before the system completely reflects the
changed priority definitions for a given CI class.

� Class level priority rules provide an ordered list of data sources for the entire
class. The priority of the data sources is determined by their position in the
list, with the first data source in the list having the highest priority, the second
data source in the list having the second highest priority, and so on. A data
provider not in a priority rule can still write data for a CI; however, its data can
be overwritten by any data source defined in the priority rule, because it is
considered to have a low priority for that class.

� Individual attribute priority rules behave the same way as class level rules,
except the specific ordered list of data sources applies only for a particular
attribute on the class. Each attribute in the class can have a different ordered
list of data sources. The number of attributes for each class that can be
prioritized using attribute level prioritization is based on the 192 character
limitation and the length of the attribute name, with the actual numbering
varying depending on the attributes that are selected to be prioritized. The
Product Console enforces the limit and informs you if an attempt is made to
prioritize too many individual attributes.

� If you change the prioritization rules from attribute to class level after data is
written in the database, the information about what data source provided
which attribute value is not preserved the next time the data is loaded.
Instead, one of the providing data sources for the existing data (not
determinate) is selected as the owner for all of the data in the CI. This data

 Chapter 6. Discovery scenarios 251

source is used in the comparison with the incoming data source to determine
if the data in the CI needs to be updated. An internal algorithm is used for the
selection. This selection occurs because class level prioritization requires that
all data in a CI comes from a single provider.

� If no priority rules are defined, TADDM allows the latest data coming into the
system to update the existing data.

� If priority rules are added after data is in the database, the existing data is
treated as having the lowest priority in the system and is overwritten by the
incoming data, no matter what priority the incoming data sources have. After
data is written using the new rules, prioritization applies to future updates.

� If priority rules are deleted after the data is in the database, any incoming data
is allowed to update the existing data.

It is important to understand that prioritization is a processing intensive feature.
Use it sparingly to prioritize only important attributes on important CIs for the
most important data sources. In many cases, it might not be necessary to
provide any data sources or priority rules for a CI. Particularly, if only one data
source reports information on that CI. Creating rules might also be unnecessary
if only a few data sources provide data for a class, and they are all equally
trusted.

When data is saved into the TADDM Database, a management software system
(MSS) identifier is also provided to define the identity of the data provider. The
system automatically attempts to match the MSS identifier of a data provider with
data source definitions defined for prioritization. If a match is made between a
MSS identifier and a data source, all priority rules that contain that data source
are applied to the incoming data.

The system compares the priority of the data source that provided data already
in the database with the priority of the incoming data. Whenever the incoming
data source has a higher priority, it is allowed to update the data in the database
(either the entire class or a particular attribute). If the incoming data source has a
lower priority than the data source that owns the data in the database, the
incoming data is ignored, either for the class or for a particular attribute.

Prioritization can only be applied between two CIs that are recognized by the
system as the same item. For TADDM, this recognition happens when attribute
values supplied for naming rule attributes match. If the same CI is written to the
database using different naming rules or different values for the attribute for
naming rules, the system views the CI as two separate things. Prioritization is not
designed to prioritize data between two CIs, and, as a result, prioritization in this
use case is not applied. This use case frequently occurs with TADDM discovery
sensors. The sensors write the same CI using different naming rules in many
cases. To eliminate duplicates from appearing in the Product Console, TADDM

252 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

runs a cleanup process (Topology Builder agents) that removes duplicate CIs
from the database. It is important to understand when a duplicate CI is deleted as
opposed to two CIs being correlated and prioritization applied.

The Details panel in the Product Console displays the MSSs that provided data
on a particular CI. This information can be used to guide which MSSs might need
data sources in the prioritization Product Console.

Migrating from an older version of TADDM to the 7.1 release of TADDM means
that all of the existing data is saved at the equivalent of the lowest priority in
TADDM 7.1. In addition, previously saved data is not attached to an MSS. Before
prioritization can be applied, new data must be loaded into the system for CIs so
that MSS information is recorded for the CIs.

6.3.1 Manually merging discovered configuration items

Manual merging is the process where you decide to combine two or more
configuration item (CI) objects that are displayed in the Product Console into one
CI.

The fact that the CIs are displayed separately indicates that they do not have
overlapping naming rules, and as far as TADDM is concerned, the CIs are
different. If you are certain that the two CIs represent the same actual CI, you
can select the CIs in the Product Console and direct the system to combine them
into one CI.

When merging CIs, a single CI is selected from the list of CIs to be merged. This
CI is called the durable CI and is retained at the end of the merge operation. The
other CIs are called transient CIs and are deleted at the end of the merge
operation.

The following rules apply to manually merging CIs:

� When CIs are merged, only the attributes of primitive types (string, integer,
and so on) are transferred from the transient CI to the durable CI, and only if
the durable CI does not already have a value for that attribute. Arrays and
objects associated with the transient CI are not transferred.

� When a transient CI is deleted, all of its related CIs are deleted as well. For
example, if a ComputerSystem CI is deleted, the operating system CI running
on the computer system is also deleted, in addition to all of the software
installations on the operating system.

� Merging is not currently supported for business systems or business
applications.

 Chapter 6. Discovery scenarios 253

If a CI that is designated as a transient object in a manual or automated merge is
later rediscovered or reloaded through the bulkload facility, it updates (combines
with) the durable object with which it was originally merged and does not result in
a second instance of the CI.

However, objects that are contained by the transient object (which are called
child objects) are treated differently. Because only a shallow merge is performed,
which combines only the top level objects, the child CIs of the transient object
might still not be recognized as identical objects. The result is potentially multiple
instances of a child CI. If multiple child CI instances do result after a merge, or on
subsequent loads of data of merged objects, the extra copies might be deleted.
For example, a bulkload operation results in computer systems CS1, CS2, and
operating system OS1 being stored with OS1 installed and running on CS1. If
CS1 and CS2 are then merged with CS1 as the durable CI, only CS1 and OS1
will remain, but TADDM does recognize that CS2 is the same CI as CS1. If
another bulkload operation results in CS2 and OS2 being added with OS2
installed and running on CS2, the existing CS1 will be updated by the information
in CS2, but OS1 and OS2 might remain as separate CIs. In this case, the proper
action to take is to delete both operating systems, and when the operating
system is rediscovered the next time, it is created so that duplicates do not exist
in the future. In very rare circumstances where the durable and the transient CI
share the identical child object (not just having different representations of the
same child object), the child object might be deleted as a result of the merge.
Rediscovering or reloading the durable object (with its children) restores the child
object.

If two CIs are mistakenly merged together attempting to rediscover or reload, the
transient object results in updating the durable object and does not recreate the
original transient CI. To rectify this situation, the durable CI must be deleted, and
the durable and transient CIs must be rediscovered or reloaded. At this point,
they again are treated as separate CIs.

Manual merging example
In the next example, we show merging two CIs manually:

1. First, we imported two AIX computer systems into the TADDM Database,
using the loadidml.sh command. For information about using the
loadidml.sh command, refer to 6.2.4, “The bulkload program” on page 246.
You can see both IDML books in Example 6-12 and Example 6-13 on
page 255.

Example 6-12 AixUnitaryComputerSystem ServerA

<?xml version="1.0" encoding="UTF-8"?>
<idml:idml
 xmlns:idml="http://www.ibm.com/xmlns/swg/idml"

254 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

 xmlns:cdm="http://www.ibm.com/xmlns/swg/cdm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/xmlns/swg/idml
idml.xsd"
>
 <idml:source>
 <cdm:process.ManagementSoftwareSystem
id="AIXSource_A.marinom.argentina.ibm.com" >

<cdm:MSSName>ibm-cdm:///CDMMSS/Hostname=marinom.argentina.ibm.com+Ma
nufacturerName=IBM+ProductName=SourceA</cdm:MS
SName>
 <cdm:ManufacturerName>IBM</cdm:ManufacturerName>
 <cdm:ProductName>SourceA</cdm:ProductName>
 <cdm:Hostname>marinom.argentina.ibm.com</cdm:Hostname>
 <cdm:ProductVersion>1.1</cdm:ProductVersion>
 </cdm:process.ManagementSoftwareSystem>
 </idml:source>
 <idml:operationSet opid="single transaction">
 <idml:create timestamp="2008-05-07T14:30:57Z">
 <cdm:CDM-ER-Specification>
 <cdm:sys.aix.AixUnitaryComputerSystem id="1" >
 <cdm:AssetID>AssestA</cdm:AssetID>
 <cdm:Signature>9.3.4.88</cdm:Signature>
 <cdm:Fqdn>ServerA.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUSpeed>30000</cdm:CPUSpeed>
 </cdm:sys.aix.AixUnitaryComputerSystem>
 </cdm:CDM-ER-Specification>
 </idml:create>
 </idml:operationSet>
</idml:idml>

Example 6-13 AixUnitaryComputerSystem ServerB

<?xml version="1.0" encoding="UTF-8"?>
<idml:idml
 xmlns:idml="http://www.ibm.com/xmlns/swg/idml"
 xmlns:cdm="http://www.ibm.com/xmlns/swg/cdm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/xmlns/swg/idml
idml.xsd"
>
 <idml:source>
 <cdm:process.ManagementSoftwareSystem
id="AIXSource_B.marinom.argentina.ibm.com" >

 Chapter 6. Discovery scenarios 255

<cdm:MSSName>ibm-cdm:///CDMMSS/Hostname=marinom.argentina.ibm.com+Ma
nufacturerName=IBM+ProductName=SourceB</cdm:MS
SName>
 <cdm:ManufacturerName>IBM</cdm:ManufacturerName>
 <cdm:ProductName>SourceB</cdm:ProductName>
 <cdm:Hostname>marinom.argentina.ibm.com</cdm:Hostname>
 <cdm:ProductVersion>1.1</cdm:ProductVersion>
 </cdm:process.ManagementSoftwareSystem>
 </idml:source>
 <idml:operationSet opid="single transaction">
 <idml:create timestamp="2008-05-07T19:16:43Z">
 <cdm:CDM-ER-Specification>
 <cdm:sys.aix.AixUnitaryComputerSystem id="1" >
 <cdm:AssetID>AssestB</cdm:AssetID>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>ServerB.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>TypeB</cdm:CPUType>
 <cdm:CPUSpeed>3000000</cdm:CPUSpeed>
 <cdm:Model>ModelB</cdm:Model>
 <cdm:SerialNumber>BBBB</cdm:SerialNumber>
 </cdm:sys.aix.AixUnitaryComputerSystem>
 </cdm:CDM-ER-Specification>
 </idml:create>
 </idml:operationSet>
</idml:idml>

2. Then, we checked the new CIs that were imported by using the TADDM
console, as shown in Figure 6-21 on page 257.

256 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-21 Using TADDM console to check the newly imported CIs

3. We know that ServerA and ServerB are the same machine, but TADDM
recognizes them as two separate machines, because the naming rules
created by the MSSs differ. If we manually delete one of these CIs, the
problem is not fixed, and in the next import, the same problem occurs.

To fix this situation, we merged both machines as described in the following
steps.

4. From the TADDM console, highlight ServerA and ServerB, right-click one of
them, and select the option to Merge.

In the new panel, select the durable CI and the transient CI, and click OK, as
shown in Figure 6-22.

Figure 6-22 Merging ServerA and ServerB

 Chapter 6. Discovery scenarios 257

5. Finally, you see only one CI as the result of the merger, as shown in
Figure 6-23.

Figure 6-23 ServerB after manual merge

Note that, if you import ServerA again, the attributes will be updated without
duplicating the existing CI. You can create prioritization rules in order to
control the CI updates. Refer to 6.3.2, “Adding prioritization rules to your
configuration items” on page 258 for more information.

6.3.2 Adding prioritization rules to your configuration items

Data sources are created by selecting Edit Prioritization Rulesfrom the
menu bar, and then, selecting Add in the TADDM Data Sources List pane. You
have three options when creating data sources in the Product Console:

� Create a data source for discovery
� Create a data source for topology
� Create a custom data source

In most cases, you create custom data sources for a few individual DLAs or
sensors, or both, and use these custom data sources in priority rules.

Note: The product and host name fields of a custom data source must be
completed carefully to ensure that the data matches the actual data source
exactly, including capitalization.

258 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 6-24 on page 260 shows the Attribute Prioritization window with the
various colors highlighted.

The colors in the Attribute Prioritization window have the following descriptions:

� In the upper left pane, Configuration Items, the CI name is highlighted in blue
if any of its attributes have a priority rule assigned to it. If a CI name is not
highlighted, it means that it has no rules defined for any of its attributes.

� In the lower left pane, TADDM Data Sources List, the data source text is
highlighted in green if it has an MSS associated with it. It is highlighted in blue
if it does not have an MSS associated with it.

� In the upper right pane, in the Attribute Name and Source Object columns,
the attribute line is highlighted according to the following schema:

a. The attribute line is highlighted in blue if it has priority rules associated
with it.

b. The attribute line is highlighted in yellow if the “source object” from which it
inherits the attribute has priority rules associated with it.

c. It is not highlighted if it does not have any priority rules assigned to it, and
it does not inherit any rules.

In Figure 6-24 on page 260, the adminState attribute is highlighted in yellow,
because the CI named Agent has priority rules defined for the attribute
adminState, and the CI, TWSAgent, inherits its attribute adminState from that
CI (Agent). The attribute accessMethod has no rules assigned to it and does
not inherit any rules.

Note: You must view a Product Console with this window displayed in order to
see the actual colors. Refer to the steps in the following section regarding
attribute prioritization to see how to get to the Attribute Prioritization window.

 Chapter 6. Discovery scenarios 259

Figure 6-24 Attribute Prioritization window

To prioritize the attributes for configuration items (CIs), complete the following
steps:

1. In the Product Console, select Edit Prioritization Rules.

2. In the lower left side of the Attribute Prioritization pane, click Add in the
TADDM Data Source List pane.

3. You can select the data source type (there are three types) in the Add Data
Source pane:

a. Create a Data Source for Discovery

This type of data source is a special data source. If you choose this
selection, all input fields for the definition of a data source are filled in with
appropriate default information and the values cannot be changed. Only
one data source of this type can be created in the system. The name of
the data source is TADDMALLDISCOVERY.

260 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

TADDM has many sensors that provide CI data. Each of these sensors is
considered a source of data and can be individually prioritized using its
own data source. However, there can be cases where you want to treat all
sensors as one logical source of data. Creating a Data Source for
Discovery, TADDMALLDISCOVERY, allows all sensors to be manipulated
in a priority list as a group. Adding the TADDMALLDISCOVERY data
source to the top of a priority list means that all sensors are prioritized
ahead of any other data source in the list. This approach simplifies
prioritization rules in cases where you want to prioritize all sensors over a
Discovery Library Adapter or prioritize a Discovery Library Adapter over all
sensors.

It is important to understand that the TADDMALLDISCOVERY data
source only contains sensors that do not already have a specific custom
data source defined for them. For example, assume that:

• TADDM only has three sensors: A, B, and C.

• A custom data source is defined for sensor A.

• The TADDMALLDISCOVERY data source will only include sensors B
and C.

For this reason, TADDM does not pre-populate individual data sources for
each sensor.

b. Create a Data Source for Topology

This data source is a special data source. The data source for topology is
infrequently used, but it allows TADDM Topology Builder agents that
create data to be prioritized if it becomes necessary. If you choose this
selection, all input fields for the definition of a data source are filled in with
appropriate default information, and the values cannot be changed. This
data source behaves in the same way as the Data Source for Discovery
described previously, except that it groups all TADDM Topology Builder
agents into one data source. In most cases, a data source of this type is
not needed. However, in certain circumstances, TADDM Topology Builder
agents can create and update attributes on CIs. If it becomes necessary to
prioritize these agents, a data source of this type can be created. As with
sensors, Topology Builder agents can also have individual data sources
defined. When individual data sources are defined for agents, they are not
included in the grouped Data Source for Topology.

c. Create a Custom Data Source

Fill in the following fields:

i. Product Name (required)

ii. Host Name (required). For example: xyz.tivlab.raleigh.austin.ibm.com

iii. Manufacturer Name (optional)

 Chapter 6. Discovery scenarios 261

iv. Description (optional)

v. MSS Assignment (optional)

The Product Name and Host Name fields in the data source definition
must exactly match the capitalization, spelling, and punctuation of an MSS
that this data source represents.

This list includes the MSS name that is associated with each sensor. By
default, all sensors have MSS names, but other MSSs can show up in this
list if you have loaded data from IDML books or from the bulkload
program. All MSSs that you have defined are in this list. You can prioritize
which data has the highest priority (for example, if you want your
WebSphere Application Server sensor information to get the highest
priority, you choose the WebSphere Application Server sensor MSS in this
field).

4. Select OK to save the new data source.

5. In the Attribute Prioritization pane, select the Model Object. The attributes that
are associated with this model object appear in the adjacent pane. Select the
Attribute Name to which to assign the new data source. Notice that the Model
Object and Attribute Name or names that you have selected are highlighted in
blue at the top of the Prioritization Rules for Configuration Item and Attribute
pane.

6. In the TADDM Data Source List pane, select the data source that you want to
apply to the model object and the attribute name that you have selected.

7. Click Copy. The data source moves to the Prioritization Rules for
Configuration Item and Attribute pane.

You can select Define Class Level Prioritization in order to apply this
prioritization to all of the attributes for the selected model object. The
attributes turn blue when a prioritization has been assigned to them.

8. In the Prioritization Rules for Configuration Item and Attribute pane, if you
have several data sources listed, you can use Move Up or Move Down to
move the data sources to the positions that you want. The higher the position
in this pane, the higher the priority for that data source.

9. Click OK to save your information.

Note: You must view a Product Console with this window displayed in
order to see the actual colors. Refer to the following steps regarding
attribute prioritization to determine how to get to this window.

262 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.4 Discovery Library Adapters

The Discovery Library provides an integration mechanism for communicating
and sharing information about discovered resources and relationships within the
enterprise.

IBM Discovery Library technology is based on the Identity Markup Language
(IDML) industry standard format, which is supported in TADDM to enable users
to exchange component data with other management solutions. It provides an
integration mechanism for communicating and sharing information about
discovered resources and relationships within the enterprise.

The Discovery Library consists of the following components:

� Discovery Library XML schema specification: This schema is called the
Identity Markup Language (IDML), which defines a set of operations for
creating, updating, and deleting objects in the Common Data Model (CDM).

� Discovery Library Adapter (DLA): DLAs are application code that is written to
extract discovered resource and relationship data and then are transformed
to the IDML specification.

� Discovery Library books: These are XML files, which are formatted according
to the IDML, that contain discovery information, including the identity of
resources and their relationships.

� Discovery Library File Store (DLFS): This is a repository for Discovery Library
books.

The following sequence describes the Discovery Library information flow:

1. A Management Software System (MSS) discovers resources and
relationships in an enterprise environment.

2. A DLA creates an IDML representation of the MSS application data
(resources and relationships). The DLA can also request discovery updates,
as required.

3. The DLA copies the IDML book to the DLFS enabling readers, such as the
bulkload program, to access the resource and relationship information.

6.4.1 Discovery Library Adapter concepts

in this section, we describe several of the Discovery Library Adapter concepts
and components, including IDML schema representation, Discovery Library
Adapters, IDML books, IDML operation semantics, and Discovery Library File
Store.

 Chapter 6. Discovery scenarios 263

IDML schema representation
IDML is the Discovery Library XML schema specification. Discovery Library
Adapters output files in IDML format that contain information about the
Management Software System (MSS) and operation sets that define groups of
operations for creating, updating, and deleting objects in the Common Data
Model (CDM).

The IDML schema references the Common Data Model schema, which
describes CDM model objects and relationships and their corresponding
representations in XML format.

Discovery Library Adapters
A Discovery Library Adapter is a runtime component in the Discovery Library that
exploits mechanisms native to Management Software Systems to extract specific
details about resources and resource relationships. Discovery Library Adapters
transform this information into files conforming to the IDML schema and store the
resulting IDML books in the Discovery Library File Store. The purpose of
Discovery Library Adapters, therefore, is to discover and keep current sets of
resources and relationships that comprise business applications and support
business and IT processes.

IDML books
IDML books, also known as Discovery Library books, are XML files containing
details about resources and resource relationships written to conform to the
IDML schema. Each IDML book represents the distinct view of the resources and
relationships at a point in time. Collections of IDML books will therefore often
represent overlapping views of the environment. Readers of IDML books are
therefore responsible for merging these views into a consistent whole that is
meaningful in the context of the application.

IDML books uniquely identify the author of the discovery data and contain
timestamp information enabling applications to chronologically sequence
multiple books. An IDML book can describe either delta or complete (also known
as refresh) discoveries. Refer to “Understanding IDML operation semantics” on
page 264 for more information. The Discovery Library provides an application
programming interface (API) for the creation of well-formed IDML books so that
Discovery Library Adapter developers can focus on the extraction and
transformation of data.

Understanding IDML operation semantics
Operation sets stored in IDML books can represent the following semantics:

� Delta: Operations in the IDML book represent changes and updates to
existing data imported during previous runs of IDML books for a particular
Management Software System.

264 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� Refresh: Operations in the IDML book represent a replacement of existing
data imported from previous runs of IDML books for a particular Management
Software System. Resources present from prior runs but not present in the
refresh operation are removed. Refresh files represent a snapshot in time and
replace existing information with new data.

The operation semantics apply to entire IDML books; you cannot specify both
delta and refresh semantics for operation sets within the same book. By default,
IDML books define delta operations for data. To specify refresh operations, the
Discovery Library Adapter must include refresh as a suffix to the name of the
book. Refer to 6.4.2, “File naming conventions” on page 265 for more information
about naming IDML books.

Discovery Library File Store
A Discovery Library File Store (DLFS) is a repository for Discovery Library
(IDML) books. A DLFS can reside on a local system or be accessible through a
network connection. After a Discovery Library Adapter has written a book to a
DLFS, the book must not be modified.

6.4.2 File naming conventions

IDML books are stored in plain text XML files, which must follow a consistent file
naming convention. The file name includes information to uniquely identify the
book within the Discovery Library File Store and to help developers and
administrators quickly identify the source and creation date of the discovery data.

IDML book names consist of the following segments:

� The application code of the Management Software System (MSS)

Every Discovery Library Adapter requires an application code (10 character
maximum). Include the short name of the application together with the
version.

� The host name of the MSS

� An ISO 8601 time stamp UTC (Coordinated Universal Time), with colons (:)
replaced by dots (.)

� The text refresh when the book contains a refresh operation

� A file name extension of .xml

The following file name example is for an IDML book that is in the Discovery
Library:

AppAv1.3.host.abcxyz.com.2006-03-07T12.05.00Z.xml

 Chapter 6. Discovery scenarios 265

The following file name example is for an IDML book that is in the Discovery
Library that contains a refresh operation:

AppAv1.3.host.abcxyz.com.2006-03-07T12.05.00Z.refresh.xml

6.4.3 Integration overview

Integrating a Management Software System (MSS) with the TADDM Database
consists of the following procedures:

� Mapping the MSS data to the Common Data Model (CDM)

� Creating a DLA that implements the model mapping and generates an IDML
book

Mapping the MSS data to the CDM begins with collecting and analyzing the
source data, as assembled by the MSS, with the intent of understanding the
content and purpose of the information. After you collect and analyze the source
data, you can identify corresponding model objects within the CDM and
determine how to apply the CDM naming rules to create unique instances of the
data.

In the process of defining model objects, you can look for additional relationships
between objects to capture the maximum information about the environment. As
part of model mapping, you must also verify that the MSS data is consistent with
attribute conventions within the CDM.

6.4.4 Creating a Discovery Library Adapter

In this section, we describe the procedure for creating a Discovery Library
Adapter, how to develop a model map using data from the Management
Software System (MSS), and how to use the DLA API to build the IDML book.

To create a DLA, complete the following steps:

1. Collect a representative sample (complete, if possible) of the type of data that
is generated by the MSS.

2. Determine the type of resources and relationships supplied by the MSS.

It is important to understand the content and purpose of the data generated
by the MSS. For each item, determine:

– If the item is a specific resource, a category of resources, or a relationship

Note: The MSS is responsible for performing discovery, monitoring resources,
and capturing the data.

266 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

– How the MSS uses the item

– How the item was discovered

You can use this information to more accurately identify the type of model
objects that will represent the item.

3. Identify model objects within the Common Data Model (CDM) that correspond
to entities within the MSS data

Identifying model objects is part of the process of creating a mapping
between the CDM and the MSS data. For example, if the MSS contains a
data item with an attribute of Windows, you can begin by deriving the
following information to represent this data item:

– There is an operating system of type Microsoft Windows.

– There is a host computer system.

– There is a relationship between the operating system and the computer
system.

Continue this process of identifying model objects present within the MSS
data by examining the targets of explicit and implied relationships. For
instance, if there is a source data item representing a computer system,
determine additional characteristics (such as the IP address) of the computer
system represented in the data. Document information about the MSS data
and potential model objects for future reference.

4. For each model object that you identify, use the CDM naming rules to
determine the attributes and relationships that are required to create an
instance of a resource.

CDM naming rules define a set of attributes and relationships that provide the
necessary naming context to create a unique identity for a model object.
Potentially, there are multiple naming rules for each model object; each object
instance must use at least one of the rules for each object type when mapping
application resource data.

In certain instances, the MSS data might not include enough information to
provide the unique identification of a resource. In this case, naming rules
require that the resource is named not only with characteristics that are
specific to it, but also with characteristics of the resource within the context of
another instance.

For example, one of the naming rules for operating system type and operating
system name specifies that the naming context be an instance of a computer
system. Therefore, in order to create a mapping to an operating system name
and operating system type, you must also define an instance of the
associated computer system, along with the relationship between the
computer system and the operating system.

 Chapter 6. Discovery scenarios 267

Naming contexts are always specified in terms of other resources,
relationships to other resources, or the attributes of other resources.

5. Apply CDM relationships between currently identified model objects, as
appropriate.

Refer to the Uniform Modelling Language (UML) diagram for the CDM to
determine potential model object relationships. Note that relationships are
hierarchical, which means that relationships between model objects are
automatically valid for subclasses of the model objects. For example, a
runsOn relationship between an operating system and a computer system is
valid for operating system subclasses. You do not need to define explicit
relationships that mirror the hierarchy of the CDM.

6. Verify that the MSS data is consistent with the attribute conventions that are
used to store existing information in the CDM and reconcile them as
necessary.

Attribute content consistency is critical. When verifying attribute content
consistency, consider the following points:

– The format of the data, including the use of dashes, dots, and other
delimiters

– Whether special characters are present

– Units of measure, if appropriate

– Case sensitivity and whether the data is typically in upper, lower, or mixed
case

For example, consider the case of serial numbers for computer systems. One
technology might require the use of only capital letters and dashes, while
another technology might consider dashes to be restricted characters. Make
note of any data processing requirements that are uncovered during the
model mapping stage.

7. Create a model mapping document and map the data from the MSS to the
CDM.

Use the Data Model Template as a guide for creating this document.
Complete the following steps to creating a model mapping document:

a. Define a usage scenario.

You must create at least one scenario to describe the data usage in the
mapping document. The scenario helps you to validate that you are
gathering the necessary information from the MSS. For example, the MSS
might be collecting information about operating systems, but you might
also need to know about running instances of application servers.

268 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

A sample scenario might read as follows: The instance data based on
classes x and y enables Application A to automate application mapping in
the provisioning module.

b. List all CDM attribute content conventions.

c. Specify the CDM classes (model objects) and associated attributes used.

d. List the relationships that are provided in the MSS data.

e. List the CDM classes with their associated naming policy and naming
rules.

8. Use the model mapping document to define operations and operation sets for
creating, modifying, and deleting model objects (managed elements).

9. Use the DLA API to build the IDML book.

The DLA API consists of an adapter API and a book production API. You are
not required to use the DLA API, but the production API offers considerable
assistance in creating well-formed IDML books conforming to the IDML
schema. Similarly, the adapter API offers common interfaces for command
and control, and other operations, such as starting and stopping discoveries.
Refer to 6.5, “Understanding the DLA APIs” on page 270 for more
information.

As part of creating the IDML book, you must also assign a file name to the
Discovery Library book. Refer to 6.4.2, “File naming conventions” on
page 265 for complete information about Discovery Library book file naming
conventions.

10.Save the book to the Discovery Library File Store by completing the following
steps. You must have write and file rename permissions on the file store:

a. Append a .partial suffix to the name of the book when saving it to the
Discovery Library.

Books copied or delivered to the Discovery Library File Store must include
the .partial suffix during the copy operation, for example:

APPAv1.1.host.abcxyz.com.2006-03-07T12.05.00Z.xml.partial

b. After the book is completely written to the Discovery Library, remove the
.partial suffix from the file name.

6.4.5 When to use a Discovery Library Adapter

Consider creating a DLA in the following cases:

� A discovery tool exists that can create a data file that contains discovered
resources and relationships.

 Chapter 6. Discovery scenarios 269

� The solution requires a loose integration with existing management
technology.

� The environment demands a quick integration solution.

� There is a need to use an existing discovery scheduler.

� There is a requirement to minimize native environment interruptions.

Alternatively, consider using the TADDM API as an integration solution in the
following cases:

� The environment requires real-time storage of information in the TADDM
Database.

� The solution will benefit from making interactive calls to the TADDM
Database to store information.

� The system requires synchronous acknowledgement that creates, updates,
and deletes have completed successfully in the TADDM Database.

� There is a need to reduce the overhead and delay of processing books and
data.

In general, the TADDM APIs provide more timely, synchronous, programmatical
integration. DLAs provide more loosely coupled, asynchronous implementations
and offer greater flexibility in many environments. Using DLAs, you can also
maintain a degree of technology independence from the TADDM
implementation, including the TADDM API, the programming model, and specific
runtime aspects.

6.5 Understanding the DLA APIs

The Discovery Library provides the following application programming interfaces
(APIs) to facilitate the integration of discovery data from a Management Software
System into the Discovery Library:

� Adapter API: Use this API to start and stop discoveries, as well as to create
transient or long running Discovery Library Adapters. Refer to 6.5.1, “Using
the DLA adapter API” on page 271 for more information.

� Book Production API: Use this API to create well-formed IDML books that
conform to the IDML schema. Refer to 6.5.5, “Using the DLA Book Production
API” on page 275 for more information.

You can use the adapter and book production APIs either in conjunction or
independently of each other.

270 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.5.1 Using the DLA adapter API

Each Management Software System (MSS) typically has its own conventions
and requirements regarding configuration, deployment, control, and security.
You can use the DLA adapter API to develop discovery code that can interface
with an MSS and be reused in multiple runtime environments. The adapter API is
implemented through the DiscoveryLibraryAdapter abstract class that provides
methods for all supported Discovery Library Adapter functions.

To create a DLA for an MSS, complete the following steps:

1. Extend the DiscoveryLibraryAdapter abstract class and override the
implementations for the getCapabilities and getConfigParams class scope
methods and the getState and stopDiscovery methods.

2. Provide implementations for the abstract setConfigParams and
startDiscovery methods. These methods are described in 6.5.2, “Managing
configuration parameters and discoveries” on page 272.

3. Optionally, override the addPropertyChangeListener and
removePropertyChangeListener methods.

You are not required to override these methods, because
addPropertyChangeListener and removePropertyChangeListener are
concrete methods in the DiscoveryLibraryAdapter class. Refer to 6.5.3,
“Managing property change listeners” on page 273 for a description of the
property change listener methods.

4. Implement the start, pause, resume, and shutdown methods for long running
DLAs.

A DLA can run in either transient or long running mode. Think of a transient
DLA as running a one-time discovery, initializing, performing the discovery
operation according to the configuration properties, and, when completed,
shutting down. Transient DLAs do not maintain an internal state that can be
interrogated.

A long running DLA maintains an internal state over time, which you can
control by using the state manipulation methods, including start, pause,
resume, and shutdown. A long running DLA can perform discoveries when it
is in the running state through a call to the startDiscovery method. We
describe these methods for writing long running DLAs in 6.5.4, “Managing
Discovery Library Adapter states” on page 274.

 Chapter 6. Discovery scenarios 271

6.5.2 Managing configuration parameters and discoveries

You can use the methods described in this section to determine and set the
configuration parameters required by an instance of a DLA. You can also use the
methods to start and stop a discovery, and determine the state of the DLA.

Table 6-7 describes the methods for managing configuration parameters and
discoveries.

Table 6-7 Configuration parameters and discovery methods

Method Description

getCapabilities() This a class scope method that returns a set of properties
indicating the capabilities of the DLA. These capabilities
include the types of discoveries that are supported, along
with whether the DLA can support transient or long running
behaviors. By default, this method returns null (indicating that
the capabilities of the DLA are unknown).

getConfigParams() This class scope method returns a structure specifying the
configuration parameters required by an instance of the DLA.
By default, this method returns null (indicating that the
configuration parameters of the Discovery Library Adapter
are unknown).

272 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.5.3 Managing property change listeners

The methods described in this section enable you to add and remove listeners
for notification when DLA properties change. The DiscoveryLibraryAdapter class
defines a single property, although you can add additional properties that support
notification.

getState() Retrieve the current state of the DLA. The state values for a
DLA are:
0 (Stopped): The DLA is not currently performing any
function and will continue in this state until started by using
the start() method. By default, this is the initial state of a DLA.
1 (Starting): The DLA is in the process of starting as a result
of a call to the initialize or start methods.
2 (Running): The DLA is running. This does not imply that a
discovery is in progress, only that the module is active and
can perform discoveries.
3 (Pausing): The DLA is in the process of pausing as a result
of a call to the pause() method.
4 (Paused): The DLA is paused. You can use this state with
DLAs that maintain internal state variables whose values
persist across calls to the pause() and resume() methods.
5 (Resuming): The DLA is in the process of resuming as a
result of a call to the resume() method.
6 (Stopping): The DLA is in the process of stopping as a
result of a call to the shutdown() method.
7 (Recovering): A DLA that needs to be running is
attempting to recover from an internal error.
8 (Aborted): The DLA ended abnormally and is not
attempting to recover.
9 (Discovering): The DLA is currently in the process of
performing a discovery.

setConfigParams
(configParams)

Initialize the API by providing a completed set of configuration
properties that contain sufficient information for the API to
connect to and extract data from its data sources.

startDiscovery() Start a discovery using the set of parameters specified using
the setConfigParams() method. If successful, the DLA
returns a value identifying the discovery that has been
started.

stopDiscovery
(discoveryId)

Stop a previously started discovery.

Method Description

 Chapter 6. Discovery scenarios 273

Table 6-8 describes the methods for managing configuration parameters and
discoveries.

Table 6-8 Property change listener methods

6.5.4 Managing Discovery Library Adapter states

You can use the methods described in this section to start, pause, resume, and
shut down a long running DLA.

Table 6-9 describes the methods for managing the state of DLAs.

Table 6-9 State methods

Methods Description

addPropertyChangeListener
(propertyName, listener)

Register an object for notification when a DLA
property changes.

removePropertyChangeListe
ner (propertyName, listener)

Unregister an object from the list of those objects to
be notified when a DLA property changes.

Methods Description

pause() Pause a long running DLA. The return value is the state of the
DLA after executing the call, either 3 (Pausing) or 4 (Paused)
depending on whether the DLA is capable of immediately
pausing.
By default, this method returns the current value of the state
attribute.

resume() Resume a long running DLA. The return value is the state of
the DLA after executing the call, either 5 (Resuming) or 2
(Running) depending on whether the DLA is capable of
immediately resuming from a paused state.
By default, this method returns the current value of the state
attribute.

shutdown() Shut down a long running DLA. The return value is the state
of the DLA after executing the call, either 6 (Stopping) or 0
(Stopped) depending on whether the DLA is capable of
immediately stopping from its current state.
By default, this method returns the current value of the state
attribute.

274 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.5.5 Using the DLA Book Production API

You can use the DLA book production API to create well-formed IDML books
conforming to the IDML schema.

To create IDML books, complete the following steps:

1. Create an instance of the IdMLBook class and initialize it by calling the
create(), getBookName(), and openBook() methods.

Refer to 6.5.6, “Book properties and methods” on page 275 for more
information.

2. Add operation sets to the book by calling the openOperationSet() and
closeOperationSet() methods. Refer to 6.5.6, “Book properties and methods”
on page 275 for more information.

3. Add operations to the operation sets by calling the openCreateOperation(),
openDeleteOperation(), openModifyOperation(), and
openRefreshOperation() methods. Refer to 6.5.6, “Book properties and
methods” on page 275 for more information.

4. Within each operation, such as create or delete, add managed elements and
relationships using the addManagedElement() and addRelationship()
methods. Refer to 6.5.7, “Managed element properties and methods” on
page 278 and 6.5.9, “Relationship properties and methods” on page 281 for
more information.

5. Call the appropriate close method to complete each operation and
operationSet, as required.

6. Close the book and complete production by calling the closeBook() method.

6.5.6 Book properties and methods

You can use the book production properties and methods to open and close
IDML books, define and specify operation sets and operations, and add
managed elements and relationships to operations.

start() Start a DLA that has already been initialized. The return value
is the state of the DLA after executing the call, either 1
(Starting) or 2 (Running) depending on whether the DLA is
capable of immediately entering a running state from a
stopped state.
By default, this method returns the current value of the state
attribute.

Methods Description

 Chapter 6. Discovery scenarios 275

Properties
Table 6-10 describes the book properties for the DLA production API.

Table 6-10 Book production properties

Methods
Table 6-11 describes the book production methods.

Table 6-11 Book production methods

Property Description

source The cdmManagementSoftwareSystem instance that
identifies the source of the discovery data contained in the
book

timestamp The IDML book creation time, specified using UTC

Method Description

addManagedElement(manag
edElement)

Append an IdMLManagedElement to the current
operation in the current operationSet. It is an error to
call this method if there is no current operation. The
method returns a reference to the IdMLBook.

addManagedElements(mana
gedElements)

Append a list of IdMLManagedElements to the
current operation in the current operationSet. It is an
error to call this method if there is no current
operation. The method returns a reference to the
IdMLBook.

addRelationship(relationship) Append an IdMLRelationship to the current
operation in the current operationSet. It is an error to
call this method if there is no current operation. The
method returns a reference to the IdMLBook.

addRelationships(relationshi
ps)

Append a list of IdMLRelationships to the current
operation in the current operationSet. It is an error to
call this method if there is no current operation. The
method returns a reference to the IdMLBook.

closeBook() Complete the book and close the file. It is an error to
call this method unless the book has previously
been opened using the openBook() method. It is
also an error to call this method if the last call to
openOperationSet() was not followed by a call to
closeOperationSet(). The method returns a
reference to the IdMLBook.

276 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

closeOperation() Complete the current operation, as specified by the
most recent call to the openCreateOperation(),
openDeleteOperation(), or openModifyOperation()
method. Following this call, there is no current
operation defined until a subsequent call to open an
operation.
It is an error to call this method if there is no open
operation. The method returns a reference to the
IdMLBook.

closeOperationSet() Complete the current operationSet. Following this
call, there is no current operationSet defined until a
subsequent openOperationSet call. It is an error to
call this method if there is no open operationSet.
The method returns a reference to the IdMLBook.

create(source, timestamp,
modelSchemaURI,
modelSchemaVersion)

This is a class scope method that creates an
instance of an IdMLBook. The method accepts the
following parameters:
source: The cdmManagementSoftwareSystem
instance that identifies the source of discovery data
in the book.
timestamp: The UTC time when the book was
created.
modelSchemaURI: The URI for the schema to be
used to validate the instances of managed elements
and relationships in the operations.
modelSchemaVersion: The version.

create(source, timestamp) This is a class scope method that creates an
instance of an IdMLBook. Similar to create(source,
timestamp, modelSchemaURI,
modelSchemaVersion), this method uses the base
Common Data Model schema for validation instead
of the user-specified modelSchemaURI and
modelSchemaVersion.

getBookName() Retrieve a character string with a name that
conforms to the conventions for IDML book file
names, based on the type, source, and timestamp
properties.

getSource() Retrieve the value of the source property.

getTimestamp() Retrieve the value of the timestamp property.

Method Description

 Chapter 6. Discovery scenarios 277

6.5.7 Managed element properties and methods

You can use the properties and methods that are described in this section to
create managed elements and add and retrieve associated attributes.

Properties
Table 6-12 on page 279 describes the managed element properties for the DLA
book production API.

openBook(outputStream) Retrieve a reference to the IdMLBook, which serves
as the output stream to which the contents will be
written. You can only call this method one time for a
particular IdMLBook.

openCreateOperation(timest
amp)

Begin a create operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IdMLBook.

openDeleteOperation(timesta
mp)

Begin a delete operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IdMLBook.

openModifyOperation(timest
amp)

Begin a modify operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IdMLBook.

openOperationSet(transactio
nal)

Open a new operationSet. The transactional
parameter specifies whether the reader of the book
must treat all operations in the operationSet as one
transaction. You must call the openBook() method
before calling openOperationSet. It is also an error
to call the openOperationSet() method if there is an
existing operationSet open. The method returns a
reference to the IdMLBook.

openRefreshOperation(times
tamp)

Begin a refresh operation. You can specify a
timestamp value for the operation. It is an error to
call this method if there is no current operationSet.
The method returns a reference to the IdMLBook.

Method Description

278 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Table 6-12 Managed element properties

Methods
Table 6-13 describes the managed element methods.

Table 6-13 Managed element methods

Property Description

type The class type of the managed element.

id A string that uniquely identifies the managed element within
the IdMLBook.

attributes A list of scalar attributes of the managed element. Each
item in the list must be of type IdMLAttribute.

Method Description

addAttribute(attribute) Add an attribute to the IdMLManagedElement
attribute list. The method returns a reference to the
IdMLManagedElement.

addAttribute(name, value) Add an attribute with the specified name and value
to the IdMLManagedElement attribute list. The
method returns a reference to the
IdMLManagedElement.

create(type, id) This is a class scope method that creates an
instance of the IdMLManagedElement class using
the following parameters:
type: The class of the managed element. It is the
responsibility of the caller to ensure that this is a
defined class in the model schema of the IdMLBook
to which the managed element will be written.
id: Uniquely identifies the managed element within
the IdMLBook. The source and target properties of
the IdMLRelationship object refers to this value. The
identifier does not need to be globally unique,
because it is used only within the IdMLBook. While
the size of the id string is not bounded, you need to
use small strings to identify managed elements
within an IdMLBook.

create(type, id, attributes) This is a class scope method that accepts a list of
attributes as a parameter and creates an instance of
the IdMLManagedElement class. The list is copied
into the IdMLManagedElement instance attribute
list.

 Chapter 6. Discovery scenarios 279

6.5.8 Attribute properties and methods

You can use the properties and methods that are described in this section to
create attributes that are associated with managed elements.

Properties
Table 6-14 describes the attribute properties for the DLA production API.

Table 6-14 Attribute properties

Methods
Table 6-15 describes the attribute methods.

Table 6-15 Attribute methods

getAttributes() Retrieve the list of attributes of the
IdMLManagedElement.

getId() Retrieve the ID property of the
IdMLManagedElement.

getType() Retrieve the type property of the
IdMLManagedElement.

Method Description

Property Description

name The attribute name

value The attribute value

Method Description

create(name, type, value) This is a class scope method that creates an
instance of IdMLAttribute using the following
parameters:
name: The name of the attribute. It is the
responsibility of the caller to ensure that the name is
valid for the IdMLManagedElement to which the
IdMLAttribute is being added.
type: The type of the attribute.
value: The value of the attribute.

getName() Retrieve the name property.

getValue() Retrieve the value property.

280 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

6.5.9 Relationship properties and methods

You can use the properties and methods that are described in this section to
create relationships between managed elements.

Properties
Table 6-16 describes the relationship properties for the DLA production API.

Table 6-16 Relationship properties

Methods
Table 6-17 describes the relationship methods.

Table 6-17 Relationship methods

Property Description

type The relationship type.

source The identifier of the source IdMLManagedElement of the
relationship.

target The identifier of the target IdMLManagedElement of the
relationship.

Methods Description

create(type, source, target) This is a class scope method that creates an
instance of IdMLRelationship using the following
parameters:
type: The type of the relationship. It is the
responsibility of the caller to ensure that this value is
a defined relationship type in the model schema of
the IdMLBook to which the relationship is being
written.
source: The ID property of the
IdMLManagedElement that is the source of the
relationship. It is the responsibility of the caller to
ensure that a relationship is written to the IdMLBook
after both the source and the target
IdMLManagedElements have been written.
target: The ID property of the
IdMLManagedElement that is the target of the
relationship. It is the responsibility of the caller to
ensure that a relationship is written to the IdMLBook
after both the source and the target
IdMLManagedElements have been written.

 Chapter 6. Discovery scenarios 281

6.6 Example of Discovery Library Adapter

In this section, we show you an example of creating an IDML Book using the
DLA Book Production API, validating that the IDML Book was created, and
loading it into TADDM using the loadidml.sh command.

Here are the steps to create, validate, and load a new IDML Book:

1. First, we collected the information that was generated by our MSS by using
an Excel file called LinuxComputerSystem.xls, as described in Figure 6-25.

Figure 6-25 MSS source LinuxComputerSystem.xls

create(type, source, target) This is a class scope method that creates an
instance of IdMLRelationship. This method is similar
to create(type, source, target) except that the source
and target parameters are specified as strings
instead of identifiers.

getSource() Retrieve the property containing the source
identifier.

getTarget() Retrieve the property containing the target identifier.

getType() Retrieve the type property.

Methods Description

282 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

2. We created a simple Java application project, which contained two classes:

– ExcelDiscoveryLibraryAdaptor.java

– ExcelConnection.java

We included the following libraries to be able to implement the DLA Book
Production API:

– dll_core.jar

– idml_schema_2.4.jar

These files are available in $COLLATION:_HOME/sdk/sdk.zip. You need to
copy the zip file onto your machine and extract it. Then, search the libraries in
<unzip_sdk_home>/dla/dla_utility.

The source code is shown in Example 6-14 and Example 6-15 on page 287.

Example 6-14 ExcelConnection.java

package DLACreate.bin;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.Timestamp;
import java.util.Date;
import DLACreate.connection.ExcelConnection;
import com.ibm.dl.production.IDMLBook;
import com.ibm.dl.production.IDMLInvalidOperationException;
import com.ibm.dl.production.IDMLManagementSoftwareSystem;
import com.ibm.dl.production.utils.OutputStreamBookWriter;
import
com.ibm.dl.schema.cdm.sys.linux.IDML_LinuxUnitaryComputerSystem;

public class ExcelDiscoveryLabraryAdaptor {

private static final String OUT_FILE =
"c:\\Desarrollo\\LinuxComputerSystem.xml";

private static final String BOOK_IDENTIFIER =
"LinuxComputerSystem.xls";

 Chapter 6. Discovery scenarios 283

private static final String PRODUCT_NAME = "AssetsManagement";

private static final String MSS_NAME_PRE = "ibm-cdm:///CDMMSS/";

private static final String MSS_NAME_POST =
"+ManufacturerName=IBM+ProductName="

+ PRODUCT_NAME;

private static final String MSS_NAME_HOSTNAME = "Hostname=";

private static final Object VERSION = "1.1";

public static void main(String[] args) {
InetAddress localMachine = null;
try {

localMachine = InetAddress.getLocalHost();
} catch (UnknownHostException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
if (localMachine == null || localMachine.getHostName() == null

|| localMachine.getCanonicalHostName() == null)
return;

IDMLManagementSoftwareSystem source = new
IDMLManagementSoftwareSystem(

BOOK_IDENTIFIER + "." +
localMachine.getCanonicalHostName());

String cdmName = MSS_NAME_PRE + MSS_NAME_HOSTNAME
+ localMachine.getCanonicalHostName() + MSS_NAME_POST;

source.addAttribute("cdm:MSSName", cdmName);
source.addAttribute("cdm:ManufacturerName", "IBM");
source.addAttribute("cdm:ProductName", PRODUCT_NAME);
source

.addAttribute("cdm:Hostname", localMachine
.getCanonicalHostName());

source.addAttribute("cdm:ProductVersion", VERSION);

IDMLBook idmlBook = IDMLBook.create(source, new Timestamp(new
Date()

.getTime()));

idmlBook.setIndent(true);
idmlBook.setUsesRefreshOperation(true);

284 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

String fileName = idmlBook.getBookName();
OutputStreamBookWriter bookWriter = null;
try {

bookWriter = OutputStreamBookWriter.create(new
FileOutputStream(

OUT_FILE));
} catch (FileNotFoundException e1) {

// TODO Auto-generated catch block
e1.printStackTrace();

}
try {

idmlBook.openBook(bookWriter);
idmlBook.openOperationSet("single transaction");
idmlBook.openCreateOperation(new Timestamp(System

.currentTimeMillis()));
addManagedElements(idmlBook);
idmlBook.closeOperation();
idmlBook.closeOperationSet();
idmlBook.closeBook();

System.out
.println("idmlBook created: " + OUT_FILE);

} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IDMLInvalidOperationException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

public static void addManagedElements(IDMLBook idmlBook) {

Connection conn = ExcelConnection.getConnection();
try {

Statement st = conn.createStatement();
String query = "Select * from [Linux$]";
ResultSet rs = st.executeQuery(query);
int id = 1;
while (rs.next()) {

 Chapter 6. Discovery scenarios 285

IDML_LinuxUnitaryComputerSystem linuxCompSystem = new
IDML_LinuxUnitaryComputerSystem(

String.valueOf(id));
linuxCompSystem.addAttribute(

IDML_LinuxUnitaryComputerSystem.ATTR_AssetID, rs
.getString(1));

linuxCompSystem.addAttribute(
IDML_LinuxUnitaryComputerSystem.ATTR_Signature, rs

.getString(2));
linuxCompSystem.addAttribute(

IDML_LinuxUnitaryComputerSystem.ATTR_Manufacturer,
rs

.getString(3));
linuxCompSystem.addAttribute(

IDML_LinuxUnitaryComputerSystem.ATTR_Fqdn, rs
.getString(4));

linuxCompSystem.addAttribute(
IDML_LinuxUnitaryComputerSystem.ATTR_CPUType, rs

.getString(5));
linuxCompSystem.addAttribute(

IDML_LinuxUnitaryComputerSystem.ATTR_CPUSpeed, rs
.getInt(6));

linuxCompSystem.addAttribute(
IDML_LinuxUnitaryComputerSystem.ATTR_Model, rs

.getString(7));
linuxCompSystem.addAttribute(

IDML_LinuxUnitaryComputerSystem.ATTR_SerialNumber,
rs

.getString(8));
idmlBook.addManagedElement(linuxCompSystem);
id = id + 1;

}
} catch (SQLException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (IDMLInvalidOperationException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

}

286 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Example 6-15 ExcelConnection.java

package DLACreate.connection;

import java.sql.DriverManager;
import java.sql.SQLException;

public class ExcelConnection {

static public java.sql.Connection getConnection() {
// Carga de Drivers
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
}

catch (ClassNotFoundException e) {
System.out.println(e.toString());

}
// Realizo la conexion
try {

java.sql.Connection conn = DriverManager
.getConnection(

"jdbc:odbc:Driver={Microsoft Excel Driver
(*.xls)}; DBQ=C:\\Desarrollo\\LinuxComputerSystem.xls",

"", "");
return conn;

} catch (SQLException e) {
System.out.println(e.toString());

}
return null;

}
}

3. After we created our Java application, we ran it. Our IDML Book was created,
and the LinuxComputerSystem.xml file is shown in Example 6-16.

Example 6-16 LinuxComputerSystem.xml

<?xml version="1.0" encoding="UTF-8"?>
<idml:idml

xmlns:idml="http://www.ibm.com/xmlns/swg/idml"
xmlns:cdm="http://www.ibm.com/xmlns/swg/cdm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/swg/idml idml.xsd"

>
 <idml:source>

 Chapter 6. Discovery scenarios 287

 <cdm:process.ManagementSoftwareSystem
id="LinuxComputerDataSource.marinom.argentina.ibm.com" >

<cdm:MSSName>ibm-cdm:///CDMMSS/Hostname=marinom.argentina.ibm.com+Ma
nufacturerName=IBM+ProductName=AssetsManagement</cdm:MSSName>
 <cdm:ManufacturerName>IBM</cdm:ManufacturerName>
 <cdm:ProductName>AssetsManagement</cdm:ProductName>
 <cdm:Hostname>marinom.argentina.ibm.com</cdm:Hostname>
 <cdm:ProductVersion>1.1</cdm:ProductVersion>
 </cdm:process.ManagementSoftwareSystem>
 </idml:source>
 <idml:operationSet opid="single transaction">
 <idml:create timestamp="2008-05-02T16:51:50Z">
 <cdm:CDM-ER-Specification>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="1" >
 <cdm:AssetID>ITSO001</cdm:AssetID>
 <cdm:Signature>192.168.100.101</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv101.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU101</cdm:CPUType>
 <cdm:CPUSpeed>300000</cdm:CPUSpeed>
 <cdm:Model>MODEL101</cdm:Model>
 <cdm:SerialNumber>111AAA101</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="2" >
 <cdm:AssetID>ITSO002</cdm:AssetID>
 <cdm:Signature>192.168.100.102</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv102.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU102</cdm:CPUType>
 <cdm:CPUSpeed>200000</cdm:CPUSpeed>
 <cdm:Model>MODEL102</cdm:Model>
 <cdm:SerialNumber>111AAA102</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="3" >
 <cdm:AssetID>ITSO003</cdm:AssetID>
 <cdm:Signature>192.168.100.103</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv103.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU103</cdm:CPUType>
 <cdm:CPUSpeed>100000</cdm:CPUSpeed>
 <cdm:Model>MODEL103</cdm:Model>
 <cdm:SerialNumber>111AAA103</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="4" >

288 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

 <cdm:AssetID>ITSO004</cdm:AssetID>
 <cdm:Signature>192.168.100.104</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv104.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU104</cdm:CPUType>
 <cdm:CPUSpeed>300000</cdm:CPUSpeed>
 <cdm:Model>MODEL104</cdm:Model>
 <cdm:SerialNumber>111AAA104</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="5" >
 <cdm:AssetID>ITSO005</cdm:AssetID>
 <cdm:Signature>192.168.100.105</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv105.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU105</cdm:CPUType>
 <cdm:CPUSpeed>200000</cdm:CPUSpeed>
 <cdm:Model>MODEL105</cdm:Model>
 <cdm:SerialNumber>111AAA105</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="6" >
 <cdm:AssetID>ITSO006</cdm:AssetID>
 <cdm:Signature>192.168.100.106</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv106.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU106</cdm:CPUType>
 <cdm:CPUSpeed>100000</cdm:CPUSpeed>
 <cdm:Model>MODEL106</cdm:Model>
 <cdm:SerialNumber>111AAA106</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="7" >
 <cdm:AssetID>ITSO007</cdm:AssetID>
 <cdm:Signature>192.168.100.107</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv107.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU107</cdm:CPUType>
 <cdm:CPUSpeed>300000</cdm:CPUSpeed>
 <cdm:Model>MODEL107</cdm:Model>
 <cdm:SerialNumber>111AAA107</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="8" >
 <cdm:AssetID>ITSO008</cdm:AssetID>
 <cdm:Signature>192.168.100.108</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv108.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU108</cdm:CPUType>

 Chapter 6. Discovery scenarios 289

 <cdm:CPUSpeed>200000</cdm:CPUSpeed>
 <cdm:Model>MODEL108</cdm:Model>
 <cdm:SerialNumber>111AAA108</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="9" >
 <cdm:AssetID>ITSO009</cdm:AssetID>
 <cdm:Signature>192.168.100.109</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv109.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU109</cdm:CPUType>
 <cdm:CPUSpeed>100000</cdm:CPUSpeed>
 <cdm:Model>MODEL109</cdm:Model>
 <cdm:SerialNumber>111AAA109</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 <cdm:sys.linux.LinuxUnitaryComputerSystem id="10" >
 <cdm:AssetID>ITSO010</cdm:AssetID>
 <cdm:Signature>192.168.100.110</cdm:Signature>
 <cdm:Manufacturer>IBM</cdm:Manufacturer>
 <cdm:Fqdn>serv110.itso.ibm.com</cdm:Fqdn>
 <cdm:CPUType>CPU110</cdm:CPUType>
 <cdm:CPUSpeed>400000</cdm:CPUSpeed>
 <cdm:Model>MODEL110</cdm:Model>
 <cdm:SerialNumber>111AAA110</cdm:SerialNumber>
 </cdm:sys.linux.LinuxUnitaryComputerSystem>
 </cdm:CDM-ER-Specification>
 </idml:create>
 </idml:operationSet>
</idml:idml>

4. After the IDML Book is created, we validated it. In order to validate the IDML
Book, use the idmlcert.jar, which is in <unzip_sdk_home>dla\validator\v2.
Follow these steps (Example 6-17).

Example 6-17 Validating the IDML Book

C:\Desarrollo\TADDM\sdk\dla\validator\v2>java -jar idmlcert.jar
c:\Desarrollo\LinuxComputerSystem.xml
IBM Discovery Library Certification Tool
Version 2.4.2

==
File: c:\Desarrollo\LinuxComputerSystem.xml
==
Certification tool found:
 11 Managed elements

290 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

 0 Relationships

[PASS] - TEST 00 (XML Parse)
[PASS] - TEST 01 (All MEs have a valid ID)
[PASS] - TEST 02 (superior reference IDs in book)
[PASS] - TEST 03 (Attributes are valid)
[PASS] - TEST 04 (All managed elements have a valid naming rule)
[PASS] - TEST 05 (All managed elements are valid)
[PASS] - TEST 06 (All relationships are valid)

Book passed all certification tests
Elapsed time: 3,2 seconds

5. When the IDML Book has been created and validated, we loaded it into
TADDM using the loadidml.sh command. For more information about how to
use the loadidml.sh command, refer to 6.2.4, “The bulkload program” on
page 246. Example 6-18 shows how we loaded the IDML Book.

Example 6-18 Loading the IDML Book

$./loadidml.sh -u administrator -p collation -f
/home/cmdbadmin/LinuxComputerSystem.xml
Bulk Load Program starting.
Bulk Load Program running.
Bulk Load Program running.
Bulk Load Program running.
Bulk Load Program succeeded. Return code is: 0
0
Bulk Load Program ending.

6. Finally, check whether these machines are already loaded into TADDM.
There are several methods to check whether these machines are already
loaded into TADDM. One method, using the TADDM console, is shown in
Figure 6-26 on page 292 and Figure 6-27 on page 292.

 Chapter 6. Discovery scenarios 291

Figure 6-26 Viewing loaded Linux computer systems from the IDML Book

Figure 6-27 Viewing loaded Linux computer system detail from the IDML Book

292 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 7. Reporting scenarios

In this chapter, we present several reporting scenarios that focus on how to use
an external reporting engine, such as Business Intelligence Reporting Tool
(BIRT) to generate various custom reports.

We introduce BIRT and describe how to deploy it on the IBM Tivoli Application
Dependency Discovery Manager (TADDM) server. We then describe scenarios
that require particular reports and show you how to create those reports.

We describe multiple ways to access the TADDM configuration management
database (CMDB) data from BIRT and explain the advantages and
disadvantages of each method.

In this chapter, we include:

� “Introducing BIRT” on page 294
� “Deploying BIRT Report Viewer on TADDM” on page 294
� “Designing TADDM Reports with BIRT” on page 296
� “Disaster recovery and validation” on page 334
� “Root cause analysis with tracking changes” on page 338

7

© Copyright IBM Corp. 2008. All rights reserved. 293

7.1 Introducing BIRT

BIRT is an Eclipse-based open source reporting system for Java-based
stand-alone and Web applications.

BIRT has two major components:

� A Report Designer that is based on Eclipse, which is used to design and
format reports

� A runtime component that you can add to your application server or
stand-alone application as a library, which is used to render report designs
into actual reports in HTML or PDF format

BIRT also offers a charting engine that lets you add charts to your own
application.

This chapter assumes a basic knowledge of BIRT. We use the BIRT 2.2.x
release. You can also use this procedure with 2.1.x releases.

Further discussion about BIRT is beyond the scope of this chapter. For more
information about BIRT, refer to the BIRT Web site, for proper introduction, at:

http://www.eclipse.org/birt/

7.2 Deploying BIRT Report Viewer on TADDM

The Viewer is used to render the report design. The BIRT Report Viewer WAR
file is released as part of the Report Engine Runtime. To deploy the Viewer on
TADDM Server, follow these steps:

1. Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2. Click Runtime, and then, select the download mirror that is closest to you.

3. Download birt-runtime-2_2_2.zip to your system.

4. Extract the archive file on your local machine.

5. Copy birt.war from the extracted folder to the TADDM Server at
<collation_home>/dist/deploy_tomcat.

Tomcat will automatically deploy birt.war, and you will see a directory called
birt that is created under deploy_tomcat.

294 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://download.eclipse.org/birt/downloads/

6. Using your browser, navigate to the following URL:

http://<TADDM_Host>:9430/birt/

If you see the panel that is shown in Figure 7-1, it means that you have
successfully deployed birt on the TADDM Tomcat server.

Figure 7-1 Introduction panel for BIRT Report Viewer

7. Click View Example to see a test report, such as the report in Figure 7-2 on
page 296. Notice that you can use the buttons at the top left corner of the
report to print the report or export it to PDF, PPT, Word, or Excel.

 Chapter 7. Reporting scenarios 295

http://<TADDM_Host>:9430/birt/
http://<TADDM_Host>:9430/birt/
http://<TADDM_Host>:9430/birt/

Figure 7-2 A test report after it was rendered as HTML

Now, you are ready to deploy your own TADDM BIRT reports.

7.3 Designing TADDM Reports with BIRT

XYZ is a Service Provider company that was recently acquired by GobalCo. The
management of GlobalCo wants to generate an inventory report of all XYZ IT
assets.

In this scenario, GlobalCo can use TADDM Level 1 discovery to quickly scan the
XYZ infrastructure to produce an inventory report about the number of computer
systems that the company has, as well as the types of operating systems that the
company runs. Level 1 is a credential-less discovery method that can be used to
discover active computer systems in the environment.

This report will help GlobalCo quickly and fairly accurately estimate the value of
the XYZ IT assets while knowing very little about XYZ IT infrastructure.

296 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

TADDM can show the result using the built-in Inventory report in the analytics
section. In this scenario, we show you how to use BIRT to show those same
reports in a graphical, more appealing view using a pie chart format.

7.3.1 Designing reports with scripted data source

BIRT supports accessing a data source using Javascript code. We refer to the
Javascript code type of data source as a scripted data source. Scripted data
sources are used to access data from sources other than an SQL, XML, or text
file. The Javascript code implements the data source by wrapping Java objects,
such as EJB, XML Stream, or any other Java object that retrieves data.

In the case of TADDM, we create the scripted data source that wraps the
Configuration Management Database (CMDB) application programming
interfaces (APIs). The data must be returned in tabular format so that BIRT can
perform various operations, such as sorting and grouping. CMDB APIs do not
return the data in that format. So, we need to create an intermediary Java object
that drives the CMDB APIs and convert the returned data to tabular format. The
Javascript code only needs to work with this Java object.

In order to develop BIRT reports for TADDM using scripted data source, we need
the BIRT Report Designer, as well as the Eclipse development platform. We can
get both the BIRT Report Designer, as well as the Eclipse development platform,
by downloading and installing the BIRT All-in-One package.

Setting up the BIRT 2.2.x All-in-One package
Complete the following procedure to download and install the BIRT 2.2.x
All-in-One package. Replace x with the latest release number, which was BIRT
2.2.2 at the time of our writing this book:

1. Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2. Click All-in-One, and then, select the download mirror that is closest to you.

3. Download birt-report-designer-all-in-one-2_2_x.zip to your system.

4. Extract the archive file on your local machine.

5. Go to the extracted folder and run the eclipse.exe application.

Creating your BIRT project
1. In Eclipse, click File New Project.

2. In the New Project window (Figure 7-3 on page 298), expand Business
Intelligence and Reporting Tools Report Project. Click Next.

 Chapter 7. Reporting scenarios 297

http://download.eclipse.org/birt/downloads/

Figure 7-3 Creating new Report Project

3. Enter TADDM Reports, for example, in the Project Name field (Figure 7-4 on
page 299). Click Finish.

298 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-4 Adding the project name

4. Right-click the project name under the Navigator panel, and then select
New Report (Figure 7-5 on page 300).

 Chapter 7. Reporting scenarios 299

Figure 7-5 Creating a new report

5. Enter the name of the report as shown in Figure 7-6 on page 301. Then, click
Finish.

300 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-6 New report wizard

Creating and implementing a scripted data source
To create and implement a scripted data source:

1. In the Data Explorer panel, right-click Data Sources and choose New Data
Source. The “Select a Data Source Type” dialog appears.

2. Select Scripted Data Source from the drop-down list.

3. In Data Source Name, type CMDB_API.

4. Choose Finish.

 Chapter 7. Reporting scenarios 301

5. In Data Explorer panel, right-click Data Sets. Choose New Data Set. The
New Data Set dialog appears, as shown in Figure 7-7.

Figure 7-7 New data set for a scripted data source

6. In the Data Set Name field, type ComputerSystems.

7. Click Next. Type OSRunning for the first output column name.

8. Choose the Type String.

9. Type NumberOfMachines for the second output column name.

10.Choose the Type as Integer. Your column definitions appear in Figure 7-8 on
page 303.

302 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-8 Column definitions

11.Click Finish.

The script window for the data set appears, as shown in Figure 7-9.

Figure 7-9 Script window for ComputerSystems data set showing available methods

Implementing the scripted data source and data set methods
Before implementing the data source and data set methods, we need to
implement the intermediary Java class. We use this intermediary Java class to
drive the CMDB APIs and convert the results to tabular form, which will be
consumed by the scripted data set methods.

 Chapter 7. Reporting scenarios 303

The sequence diagram in Figure 7-10 shows how the components of the scripted
data source and the data set are related and how the intermediary Java class is
used.

Figure 7-10 Scripted data source sequence diagram

Follow these steps to implement your first TADDM report:

1. Use Eclipse Java Platform, or any other Java development tool with which
you are comfortable, to create a Java class as shown in Example 7-1.

Example 7-1 CMDBDriver.java class

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

304 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

import com.collation.platform.model.ModelObject;
import com.collation.platform.model.topology.sys.ComputerSystem;
import com.collation.proxy.api.client.ApiConnection;
import com.collation.proxy.api.client.ApiException;
import com.collation.proxy.api.client.ApiSession;
import com.collation.proxy.api.client.CMDBApi;
import com.collation.proxy.api.client.DataResultSet;
import com.ibm.cdb.api.ApiFactory;

public class CMDBDriver {

 public static final String DEFAULT_HOST = "localhost";

 public static final int DEFAULT_PORT = 9530;

 public static final String DEFAULT_ADMIN_USER = "administrator";

 public static final String DEFAULT_ADMIN_PASSWORD = "collation";

 private CMDBApi api = null;

 private ApiSession session = null;

 private ApiConnection connection = null;

 public void connect() {
 connect(DEFAULT_HOST, DEFAULT_PORT, DEFAULT_ADMIN_USER,
 DEFAULT_ADMIN_PASSWORD);
 }

 public void connect(String host) {
 connect(host, DEFAULT_PORT, DEFAULT_ADMIN_USER, DEFAULT_ADMIN_PASSWORD);
 }

 public void connect(String host, int port, String username, String password) {

 try {
 connection = ApiFactory.getInstance().getApiConnection(host, port,
 null, false);
 session = ApiFactory.getInstance().getSession(connection, username,
 password, ApiSession.DEFAULT_VERSION);
 api = session.createCMDBApi();
 } catch (ApiException e) {
 System.err.println("exception:" + e);
 e.printStackTrace();

 Chapter 7. Reporting scenarios 305

 }
 }

 public void disconnect() {
 try {
 if (api != null) {
 api.close();
 api = null;
 }
 if (session != null) {
 session.close();
 session = null;
 }
 if (connection != null) {
 connection.close();
 connection = null;
 }
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 ex.printStackTrace();
 }
 }

 public List<String[]> getComputerSystems(String OSName) {

 if (api == null) {
 return null;
 }

 List<String[]> list = null;

 try {
 ModelObject[] mos = null;
 if (OSName.equals("*"))
 mos = api.find("SELECT * from ComputerSystem", 2, null, null);
 else
 mos = api.find(
 "SELECT * from ComputerSystem WHERE OSRunning.OSName contains
"
 + "'" + OSName + "'", 2, null, null);

 list = new ArrayList<String[]>(mos.length);
 for (int i = 0; i < mos.length; i++) {
 ComputerSystem system = (ComputerSystem) mos[i];
 list.add(new String[] {

306 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

 system.getDisplayName(),
 system.getGuid().toString(),
 system.hasOSRunning() ? system.getOSRunning()
 .getOSName() : "N/A" });
 }

 } catch (ApiException ae) {
 System.err.println("api exception:" + ae);
 ae.printStackTrace();
 } catch (Exception ex) {
 System.err.println("exception:" + ex);
 ex.printStackTrace();
 } finally {
 disconnect();
 }

 return list;
 }

 public List<Object[]> getComputerSystemsStatistics() {

 List<Object[]> results = new ArrayList<Object[]>();
 List<String[]> systems = getComputerSystems("*");
 if (systems != null) {
 Iterator<String[]> it = systems.iterator();
 int windowsScore = 0;
 int linuxScore = 0;
 int aixScore = 0;
 int othersScore = 0;
 while (it.hasNext()) {
 String[] row = it.next();
 if (row[2].indexOf("Windows") != -1)
 windowsScore++;
 else if (row[2].indexOf("Linux") != -1)
 linuxScore++;
 else if (row[2].indexOf("AIX") != -1)
 aixScore++;
 else
 othersScore++;

 }
 results.add(new Object[] { "Windows", windowsScore });
 results.add(new Object[] { "Linux", linuxScore });
 results.add(new Object[] { "AIX", aixScore });
 results.add(new Object[] { "Others", othersScore });

 Chapter 7. Reporting scenarios 307

 }

 return results;
 }

 public static void main(String[] args) {
 CMDBDriver driver = new CMDBDriver();
 driver.connect("9.3.5.51");
 List<String[]> systems = driver.getComputerSystems("*");
 if (systems != null) {
 Iterator<String[]> it = systems.iterator();
 while (it.hasNext()) {
 Object[] row = it.next();
 System.out.println("Name: " + row[0] + "\tGUID: " + row[1]);
 }
 }
 driver.disconnect();
 }

}

2. To build this class, you need three TADDM Client API JARs in the Eclipse
Java project build path, api-client.jar, api-dep.jar, and platform-model.jar,
which are under <COLLATION_HOME>/dist/sdk/lib. If you do not have
access to the Eclipse Java development platform, you can simply compile the
class in Example 7-1 on page 304 by using the Java 5.0 compiler from the
command line, which is shown in Example 7-2.

Example 7-2 Compiling CMDBDriver.java class using the Windows command line

#set the COLLATION_HOME environment variable
set COLLATION_HOME=C:\IBM\cmdb

#add java to PATH
set PATH=%COLLATION_HOME%\external\jdk-1.5.0-Windows-i386\bin;%PATH%

#add TADDM API JARs to CLASSPATH
set
CLASSPATH=.;%COLLATION_HOME%\sdk\lib\api-client.jar;%COLLATION_HOME%\sd
k\lib\api-dep.jar;%COLLATION_HOME%\sdk\lib\platform-model.jar
#compile the class
javac -d . CMDBDriver.java

308 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

3. Go back to Eclipse Report Designer. In the Script view, as shown in
Figure 7-9 on page 303, click CMDB_API under the data source, and then,
select open from the method list box in the Script panel on the right. Enter the
following Javascript code in the scripting space:

cmdbDriver = new Packages.CMDBDriver();
cmdbDriver.connect("9.3.5.51");

4. Select close for the method from the CMDB_API data source and enter the
following line of code in the scripting space:

cmdbDriver.disconnect();

The panel in Figure 7-11 shows where the code needs to be written.

Figure 7-11 Adding Javascript code to the data source

5. Select ComputerSystems for the data set and select open in the scripting
panel. Add the following code:

stats = cmdbDriver.getComputerSystemsStatistics();
size = stats.size();
currentRecord = 0;

6. Select fetch for the method from the data set methods list. Add the following
code:

if(currentRecord >= size) {
 return false;
}
item = stats.get(currentRecord);
row["OSRunning"] = item[0];
row["NumberOfMachines"] = item[1];
currentRecord++;

return true;

Note: The TADDM Server in our lab was installed on 9.3.5.51. Change to the
IP address or host name that is relevant for your environment, or just use
cmdbDriver.connect() if the TADDM Server is running on the localhost.

 Chapter 7. Reporting scenarios 309

7. Save the report.

8. If you use the BIRT 2.2.x All-in-One package, as described in “Setting up the
BIRT 2.2.x All-in-One package” on page 297, set up your CMDBDriver Java
project in the same workspace as the TADDM Reports BIRT project. If you
use the BIRT 2.2.x All-in-One package, you can now perform a quick test to
make sure that your data source and data set work properly:

– Right-click ComputerSystems for the data set, and select Edit.
– Select the last option Preview Results.
– Depending on the speed of your TADDM Server, you will see the results

preview as shown in Figure 7-12.

Figure 7-12 Scripted data set results preview

9. Refer to Figure 7-11 on page 309, and select the Layout tab on the lower
right panel, and then, select Palette on the left.

10.Select Text from the list under Report Items and drag it to the report layout.
The Edit Text Item dialog shows up, as shown in Figure 7-13 on page 311.

11.Change the selection at the top of Figure 7-13 on page 311 from Auto to
HTML, and then, insert the HTML markup text as shown in Example 7-3 on
page 311. This text will become the report title section.

310 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-13 Edit Text Item dialog with the changes added

Example 7-3 Sample report title in HTML

<CENTER>
Computer Systems List

For internal use only

Report generated on <VALUE-OF>new Date()</VALUE-OF>
</CENTER>

12.Select Chart from the Palette tab and drag it to the report layout. The New
Chart dialog is displayed as shown in Figure 7-14 on page 312.

 Chapter 7. Reporting scenarios 311

Figure 7-14 New Chart dialog with the Pie type chart selected

13.Select Pie from Select Chart Type list, and optionally, choose 2D With Depth
from the Dimension list box.

14.Click the Select Data tab. Choose Use Data Set, and then, select
ComputerSystems for the data set, which we created earlier, as shown in
Figure 7-7 on page 302, and wait until the data is loaded into the Data
Preview panel.

15.Select OSRunning and either right-click and select Use as Category Series
or just simply drag it to Category Definition text box space. The color of the
column will change, which indicates that the data has been bound to the
chart.

312 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

16.Select NumberOfMachines, the second column, but drag this column to the
Slice Size Definition text box space, or right-click NumberOfMachines and
select Plot as Value series. You see the results in Figure 7-15.

Figure 7-15 Preview of the chart after the data set is bound to it

17.Finally, select Format Chart to add a chart title or interactivity behavior.
Select Title under the Chart Area list and enter a title in Chart Title text box,
as shown in Figure 7-16 on page 314.

 Chapter 7. Reporting scenarios 313

Figure 7-16 Formatting the chart

18.Click Finish. Adjust the chart frame to the preferred size. Save the report
design. The final layout is displayed in Figure 7-17 on page 315.

314 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-17 The final report layout

Deploying the report design on the TADDM Server
Assuming that you have deployed BIRT Report Viewer on TADDM Tomcat as
explained in 7.2, “Deploying BIRT Report Viewer on TADDM” on page 294, follow
these steps to deploy and view your new report:

1. Copy the report design file, taddm_computersystems_chart.rptdesign, from
the Eclipse BIRT project to your TADDM Server machine under
<COLLATION_HOME>/dist/deploy-tomcat/birt. If you do not find the birt
folder, it means that you did not deploy BIRT Report Viewer to TADDM
Tomcat.

Note: You cannot use the Preview tab in the layout panel or actually run the
report in Eclipse, because both api-dep.jar and one of the Eclipse internal
plug-ins define and implement Apache’s Log4J interfaces, which causes a
class loader exception. This problem does not occur when you run the report
outside of the Eclipse environment.

 Chapter 7. Reporting scenarios 315

2. Copy CMDBDriver.class, which you built using Example 7-1 on page 304, to
<COLLATION_HOME>/dist/deploy-tomcat/birt/WEB-INF/classes. If the
classes folder does not exist, create a classes folder.

3. Copy api-client.jar, api-dep.jar, and platform-model.jar from
<COLLATION_HOME>/dist/sdk/lib to
<COLLATION_HOME>/dist/deploy-tomcat/birt/WEB-INF/lib.

4. Restart the TADDM Server.

5. Using your browser, navigate to the following URL:

http://<TADDM_HOST>:9430/birt/frameset?__report=taddm_computersystem
s_chart.rptdesign

6. Wait for the report to be rendered in the browser. The result is displayed in
Figure 7-18.

Figure 7-18 TADDM Computer Systems report using BIRT

316 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://<TADDM_HOST>:9430/birt/frameset?__report=taddm_computersystems_chart.rptdesign

7.3.2 Designing reports with TADDM Database Views

GlobalCo wants to run a quick software audit on XYZ to verify that all of the
software products that are installed on certain Windows machines are licensed.

XYZ kept the Windows software product licenses in an Excel Spreadsheet, which
lists the installed software product name, version, vendor, and the machine name
on which the product is installed.

In this scenario, we show you how to use BIRT to produce a license cross-check
report on a particular Windows machine. We show you how BIRT can access
more than one source of information, such as an Excel sheet and TADDM’s
CMDB data, and then, organize the data on one report.

We use TADDM Database Reporting Views as the CMDB data source in order to
show you an alternative way to access TADDM data without using any
programming.

Issues with using the scripted data set
The biggest disadvantage of using the scripted data set is the need to use
Java/Javascript programming to access data. The alternative is to use Java
Database Connectivity (JDBC) Data Source where BIRT accesses specially
created CMDB database views directly. TADDM 7.1 ships with a script that
creates those views. These views were designed to mimic the information that is
displayed in the Details Panel of the Product Console.

Generating TADDM Database views
Complete the following steps to add the database views that you see listed in the
steps. Both Oracle and DB2 scripts are included. For details about setting up the
views, refer to the Tivoli Application Dependency Discovery Manager Version 7.1
information center, under the SDK Developer’s Guide, and then, look for
Exploring database reporting views. Here, we explain how to generate the
database views for DB2 only.

To add or drop the views for a DB2 database, run the following scripts:

� The following script creates the reporting views:

dist/support/bin/make_db2_reporting_views.sh [dbpassword]

� The following script deletes the previously created reporting views:

dist/support/bin/drop_db2_reporting_views.sh [dbpassword]

where:

The dbpassword is optional. The command prompts you for a password if no
password is provided on the command line.

 Chapter 7. Reporting scenarios 317

� These shell scripts call the following SQL scripts:

dist/support/bin/make_db2_reporting_views.sql
dist/support/bin/drop_db2_reporting_views.sql

Creating data sources for the database views and Excel
We start the same way that we did in 7.3.1, “Designing reports with scripted data
source” on page 297:

1. Reuse the same project to create a new Report design. We call it
taddm_software_audit.rptdesign.

2. Create a new data source, and select a JDBC data source, as shown in
Figure 7-19, and then, click Next.

Figure 7-19 New JDBC data source

3. You need to specify the JDBC driver class, as well the Database URL or
connection string on Figure 7-20 on page 319. If you use DB2 as the CMDB
data set, choose com.ibm.db2.jcc.DB2Driver from the list of Driver Classes,
and fill the rest of the entries with the database URL and the database
username and password. The user that you specify needs to be the CMDB
instance owner or a DB user with permission to access the CMDB views.
Refer to Figure 7-20 on page 319 for an example. The URL is a JDBC

318 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

connection string that has the form jdbc:<db name>://<host
name>:port/<instance name>. You almost certainly have other values to enter
here apart from the Driver Class field.

Figure 7-20 JDBC connection details for CMDB on DB2

4. If you do not find com.ibm.db2.jcc.DB2Driver class in the list, you need to add
the DB2 JDBC JARs to the BIRT-managed drivers. Click Manage Drivers
and add the DB2 JDBC driver as shown in Figure 7-21 on page 320.

Note: The DB2 Universal JDBC driver is a Type 4 driver that can connect
directly to a DB2 server. No DB2 client software is required on the platform
where the driver is installed. You can find the driver in a pre-existing DB2
installation or download the driver from this Web site:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en
_US&source=swg-dm-db2jdbcdriver

The driver files are:

� db2jcc.jar
� db2jcc_license_cu.jar

 Chapter 7. Reporting scenarios 319

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-dm-db2jdbcdriver

Figure 7-21 Adding DB2 JDBC JAR files to BIRT-managed drivers

5. Click Test Connection to make sure that your settings are correct.

6. Create a second report, and call it excel_software_inventory.rptdesign.

7. Create a data source for the Excel sheet, and call it Excel, for example.

8. Use the JDBC data source, and enter the JDBC connection details as shown
in Figure 7-22 on page 321. You need to enter the ODBC driver class in the
Driver Class field. You do not need to add any JARs.

320 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-22 JDBC connection details for Microsoft Excel sheet

9. Test the connection, and then, click Finish.

Creating data sets
Follow these steps to create two data sets, one in each of the reports. One data
set loads data from the Software Components View and the other data set loads
data from Software_inventory.xls.

The inventory sheet name is “Products”, and it contains the information that is
shown in Figure 7-23.

Figure 7-23 Software_inventory.xls sample content

 Chapter 7. Reporting scenarios 321

To create two data sets:

1. In taddm_software_audit.rptdesign, create a new data set and specify
CMDB_Views as the data source and SQL Select Query as the data set type.
Click Next.

2. Filter out unwanted schema by choosing your CMDB instance schema and
selecting View from the Type list box, and then, click Apply Filter.

3. In the SQL edit box, enter the asterisk character (*) to the right of “select”, and
then, set the cursor on the space next to “from”.

4. From the list of views on the left under Available Items, select
CDT_SOFTWARE_COMPONENT_VIEW as shown in Figure 7-24.

Figure 7-24 Setting up the software component query

5. Click Finish. Then, right-click the data set that you have created, and select
Edit Preview Results to check that you can load the data correctly.

6. In excel_software_inventory.rptdesign, create a second data set for the Excel
sheet, selecting Excel as the data source and SQL Select Query as the type.
Call it Software_Lic, for example.

7. In Figure 7-25, enter the following SQL statement in the SQL edit box:

322 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

select *
from [Products$]

where Products is the name of the sheet.

Figure 7-25 Query definition of Excel data set

8. Click Finish. Then, check Preview Results to see that the data is loaded
correctly. Figure 7-26 on page 324 shows the preview results of our Excel
sheet.

 Chapter 7. Reporting scenarios 323

Figure 7-26 Preview results of the Software_Lic data set

Designing the reports
Follow these steps to design the reports:

1. While in the taddm_software_audit.rptdesign layout view, choose the Palette
tab on the left panel. The palette displays all of the elements that you can
place in a report.

2. Drag a Table element from the palette, and drop it in the report in the layout
editor. The Insert Table dialog prompts you to specify the number of columns
and the number of detail rows to create for the table. The dialog also prompts
you to select a data set to bind with the table.

3. On the Insert Table dialog, specify the following values, as shown in
Figure 7-27.

Figure 7-27 Insert Table dialog

324 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

4. Choose OK. A table with three columns and one detail row appears in the
layout editor. Now, you are ready to insert the data into the table.

5. Choose Data Explorer. Expand Data Sets Software Components.

6. Drag FQDN, PRODUCT_NAME, and PRODUCT_VERSION one by one from
Data Explorer, and drop them in the first, second, and third cells in the table’s
detail row.

7. In the layout editor, the table cells contain data elements. Appearing above
these data elements are the label elements that the layout editor
automatically added to the header row. These labels display the field names
as static text and serve as the column headings. You can change these labels
to more elegant heading names and format them if you prefer.

8. Group the data in the table under FQDN by selecting the table, right-clicking,
and selecting Insert Group. Edit the entries as shown in Figure 7-28.

Figure 7-28 Add grouping feature to the table

 Chapter 7. Reporting scenarios 325

9. Select FQDN (the data element, not the grouping element), and from
Property Editor - Data in the panel beneath the layout, choose the
Properties tab, and then, select Visibility.

10.Select the Hide Element check box so that the host name is not repeated
with every row.

11.Optionally, add a title to the report by dragging a Text element from the
palette. You can use a variation of Example 7-3 on page 311.

12.The final design is shown in Figure 7-29.

Figure 7-29 The final design of taddm_software_audit.rptdesign

326 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

13.In the excel_software_inventory.rptdesign layout, drag a table element with
3x1 size.

14.Choose Data Explorer Data Sets Software_Lic.

15.Drag the Product Name, Product Version, and License data elements, one
by one, from Data Explorer, and drop them in the first, second, and third cells
in the table’s detail row.

16.In Data Explorer, right-click Report Parameters and select New Parameter.

17.In the New Parameter dialog, enter the name of the parameter as hostname.

18.In the same way, create a second parameter and call it productname.

19.Optionally, add a title to the report, using a variation of Example 7-3 on
page 311, and format the header row to your preference.

The final report design is shown in Figure 7-30.

Figure 7-30 The final design of excel_software_inventory.rptdesign

Creating a link between the reports
The reporting scenario that we need to implement has the following flow:

1. The user runs the taddm_software_audit report.

2. While browsing through the report, the user finds a particular software
component that was discovered by TADDM as being installed on a particular
host.

3. The user wants to make sure that this software component is licensed to run
on this specific host.

4. The user clicks the software component. A new window appears that shows
the excel_software_inventory report with only the software products that are
licensed to run on the host in question.

 Chapter 7. Reporting scenarios 327

5. If the software component was licensed for this host and is included in the
Excel sheet (software_inventory.xls), it is highlighted in the new window.

6. If no highlighted item is shown in the new window, it means that either the
discovered software component does not need a license or it is possibly an
illegal installation.

Follow these steps to link the two reports so that you can implement this
scenario:

1. In the taddm_software_audit report layout, select the data element,
PRODUCT_NAME.

2. Select the Property Editor - Data tab, Properties, and Hyperlink. The
Hyperlink properties appear, as shown in Figure 7-31.

Figure 7-31 Choosing the Hyperlink option

3. Choose ... (the ellipsis).

4. On the Hyperlink Options panel, complete the following tasks:

a. For Select Hyperlink Type, choose Drill-through.

b. In Step 1: Select a target report, select Report Design, then, choose
Browse For File, and navigate to excel_software_inventory.rptdesign.

c. Because the target report has parameters, Report Parameters is enabled.

d. Select the field beneath the Parameters column heading.

e. Select hostname from the drop-down list box in this field.

f. Select the field beneath the Values column heading, and type this
expression in the Values field for the hostname parameter : row[“FQDN”].

328 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

g. Type this expression in the Values field for the productname parameter:
row[“PRODUCT_NAME”].

h. For Step 4: Show Target report in, select New Window.

i. The Hyperlink Options panel is shown in Figure 7-32. Click OK.

Figure 7-32 The Hyperlink Options choices

j. In the excel_software_inventory report layout, select the data table.

k. In the Property Editor tab, select the Filters tab.

l. Click Add.

m. On the New Filter Condition panel, enter the following expression:

params[“hostname“].toUpperCase().indexOf(row[“Host
Name“].toUpperCase(), 0)

 Chapter 7. Reporting scenarios 329

n. Change the operator to Greater than or Equal. Then, enter 0 in the value
text box as shown in Figure 7-33, and then, click OK.

Figure 7-33 excel_software_audit table filter options

o. Select the table details row.

p. In the Property Editor, select the Highlights tab.

q. Click Add.

r. On the New Highlight panel, enter the following expression:

params[“productname”].toUpperCase().indexOf(row[“Product
Name”].toUpperCase(), 0)

s. Change the operator to Greater than or Equal. Then, enter 0 in the value
textbox. Choose the type of highlight that you want to see when a software
component has been found in the software inventory sheet, as shown in
Figure 7-34 on page 331. Then, click OK.

330 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-34 The Highlight options for excel_software_inventory row

t. In order to see the host name in the title of the excel_software_inventory
report, type the Example 7-4 code in the title Text element. Make sure that
you select HTML from the drop-down list.

Example 7-4 Sample title text box content for excel_software_inventory report

<CENTER>

 <VALUE-OF>params[“hostname”]</VALUE-OF> Software Products Licenses

 For internal use only
</CENTER>

 Chapter 7. Reporting scenarios 331

Now, we are ready to test this scenario:

1. Either copy both reports to TADDM Tomcat under birt as explained in
“Deploying the report design on the TADDM Server” on page 315, or just use
Eclipse BIRT designer to test.

2. Using Eclipse, right-click taddm_software_audit report in the Navigator
panel.

3. Choose Report Run Report. Figure 7-35 is displayed.

Figure 7-35 TADDM Software Components Report

4. Notice that the Product Name items are hot links. If we click IBM Tivoli
Monitoring, for example, a new window pops up as shown in Figure 7-36 on
page 333.

332 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-36 Software Inventory report with a highlighted item

5. The Tivoli Monitoring item is highlighted, which indicates that this software
component is licensed on the host name named TORONTO.

6. If we click Jasc Paint Shop Pro 8 in the first report window, the second
report window is displayed, but no product is highlighted, which indicates that
no license was found for Paint Shop Pro, as shown in Figure 7-37.

Figure 7-37 Software Inventory report with no highlighted item

 Chapter 7. Reporting scenarios 333

7.4 Disaster recovery and validation

In this scenario, we demonstrate how to use the TADDM versioning feature and
comparison report to recover from a major system outage and reinstate the
service level to where it was before the outage.

7.4.1 Versions

Versions are snapshots of the current infrastructure. They are read-only views of
the entire topology.

One of the best practices in IT System management is to create a snapshot of
the infrastructure Configuration Items (CIs) before any major IT change. This
snapshot will help to restore the environment to its pre-change state if the
change is problematic and causes a major reduction in the level of service or
even a complete loss of the level of service.

The way to create a snapshot in TADDM is by creating a version before any
major change, such as a new IT asset, is added into your current IT environment
or a new application is deployed from the development and testing environment
to production. You can then use these versions in the “Comparison report”, which
compares CIs of the same type between versions.

Version operations
In this section, we discuss the operations that you can perform with versions.

Creating versions
From the Product Console, go to the Discovery Versions view, and select
Create. Enter a version name, and click OK.

Note:

� We suggest that you have naming rules for version names to avoid
possible confusion later; for example, use the date as part of the version
name. A version ID is generated in TADDM whenever a new version is
created. The current version has an ID value of 0.

� The discovered data for the new version is in the CMDB database and is
stored under the archive user schema, which is the archive user specified
during the TADDM installation.

334 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Viewing version data
Go to the Versions view, select a version, and click View. The view opens in a
new window, and the version is shown in the title bar of the new window as
shown in Figure 7-38.

Figure 7-38 Version view

Now, let us assume that XYZ had a major hardware problem, and they had to
reinstall all of their business applications from the beginning on new hardware.
The XYZ IT team wants to configure the new system with the same settings that
were used before the outage.

Assuming that a snapshot of the infrastructure was taken using the TADDM
versioning capability, the XYZ IT team can easily configure their new system to
the original settings by following these steps:

1. Run a Level 3 discovery on the new environment. This step discovers the IT
environment as installed with the configurations set to the default values.

 Chapter 7. Reporting scenarios 335

2. The XYZ IT team runs the TADDM Comparison report, which guides them
through the process of reconfiguring the environment to the state where it
was before the hardware problem. To run the report on the component that
needs to be reconfigured, right-click the component in the Topology View and
choose Compare Across Versions, as shown in the Figure 7-39.

Figure 7-39 Selecting the Comparison report from the Topology View

3. In the Included Components box, keep only the current version and the
version number against which you want to compare, and set that version as
key, as shown in Figure 7-40.

Figure 7-40 Selecting the versions for the comparison report

336 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

4. Click Run Report, and the result is shown in Figure 7-41.

Figure 7-41 DB2 Comparison report example

The values in black belong to the version that was selected as key. The values
highlighted in red belong to the current configuration. The IT team now can tell
which configuration changes they need to make in DB2 to make the configuration
the same as it was before the outage.

The IT team can run this comparison report on other components of the business
application, such as the Apache server, which is shown in Figure 7-39 on
page 336. Figure 7-42 shows the results.

Figure 7-42 Apache Server Comparison report example

 Chapter 7. Reporting scenarios 337

The report in Figure 7-42 on page 337 shows that the content of admin.conf
differs between the versions. If you then click the linked entry that is highlighted in
blue, you get the reason behind the difference, as shown in Figure 7-43.

Figure 7-43 Apache Comparison report details

7.5 Root cause analysis with tracking changes

In this scenario, we illustrate how to use the Application Topology Views, as well
as change history reports, to identify the root cause of the service level
degradation.

Suppose that the IT team of XYZ has noticed a reduction in the Order
Management application performance. The IT team can use the TADDM Change
History report feature to identify what was changed in the environment that might
have caused the performance degradation. To generate a change history of a
business application, follow these steps:

1. Run a discovery on the machine or machines that host the business
application in question in order to capture the latest configuration settings.

2. From the Business Application Topology View, right-click the Order
Management application, and choose Change History.

3. On the Change History panel, verify that the Date Range includes the
expected time frame during which the performance degradation must have
started to occur, as shown in Figure 7-44 on page 339.

338 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 7-44 Change History settings

4. Click Run Report. The result is shown in Figure 7-45.

Figure 7-45 Change History report for Order Management business application

The report shows that the DB2 diagnostic error capture level increased on the
16th of May from level 3 (all errors and warnings) to level 4 (all errors, warnings,
and informational messages). This increase accounts for the performance
degradation, because to the host machine hard disk became busier with logging
extra informational data.

 Chapter 7. Reporting scenarios 339

340 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Part 4 Performance and
Troubleshooting
Considerations

In this part we focus on performance and troubleshooting considerations for
Tivoli Application Dependency Discovery Manager.

Part 4

© Copyright IBM Corp. 2008. All rights reserved. 341

342 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 8. Performance considerations

Most complex software packages have a number of parameters that affect their
performance, and IBM Tivoli Application Discovery and Dependency Manager
(TADDM) is no exception. The default settings that TADDM ships with were
found to generally perform well. However, every environment is different, so
some adjustment of these settings might be needed to deliver optimal discovery
performance.

In this chapter, we discuss:

� “Performance improvements in TADDM V7.1” on page 344
� “Discovery tuning” on page 344
� “Tuning storage performance” on page 350
� “Caching user interface views” on page 351
� “Database considerations” on page 355
� “Java Virtual Machine settings” on page 361
� “Log settings for production” on page 363
� “Maintenance” on page 363

8

© Copyright IBM Corp. 2008. All rights reserved. 343

8.1 Performance improvements in TADDM V7.1

As clients’ discovered environments got larger, the amount of data in client
databases increased, and what clients wanted to do with this information
became more complicated, performance necessarily became a focus in TADDM
7.1. Table 8-1 shows the performance increases reported by product
management for TADDM 7.1 over TADDM 5.1.3.

Table 8-1 Improvements over TADDM 5.1.3

Of course, performance is specific to the hardware, operating system, size of
your environment, and database configuration, so specific environments can
differ.

One of the biggest performance enhancements is “view caching”, which we
discuss in 8.2, “Discovery tuning” on page 344.

Performance continues to be an area of improvement for the 7.1 release of
TADDM. For example, with 7.1 Interim Fix 4, business application topology builds
(the slowest topology build in 7.1) went from 38+ hours to 3 minutes in one
particular client environment.

8.2 Discovery tuning

The TADDM GUI provides information that is useful for monitoring discovery
performance. Figure 8-1 on page 345 shows the Discovery Overview window.

Percentage improved Function

13% Discovery overall

60% User interface

30% WebSphere sensor

89% DB2 sensor

93% Bulk load

40% eCMDB sync

344 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 8-1 Discovery status

The sensors that are displayed on this window will have one of three states:
done, error, and in progress, as shown in the Status column of Figure 8-1. The
sensors in the done or error states are no longer being processed. To monitor
performance, it is only useful to look at the in progress sensors.

The in progress sensor is in one of three stages of execution. These stages are
shown in the Description column of the panel. You can group the sensors on the
display by these stages, by clicking the Description column heading.

 Chapter 8. Performance considerations 345

The first stage is started. For a sensor, the started stage is in the process of
discovering one or more configuration items (CIs). Refer to Figure 8-2.

Figure 8-2 Discovery in progress

The second stage is discovered. For a sensor, the discovered stage has finished
discovering one or more CIs, but it is still waiting for its results to be saved in the
datastore. Refer to Figure 8-3 on page 347.

346 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 8-3 Discovery done

The final stage of an in progress sensor is storing. As the name implies, sensors
in this stage are having their results persisted in the database. Refer to
Figure 8-4 on page 348.

 Chapter 8. Performance considerations 347

Figure 8-4 In progress status

By observing a discovery run and comparing the number of in progress sensors
that are in the started stage to the number of in progress sensors in the
discovered or storing stages, you can make an assessment about whether
attribute discovery is faster or slower than attribute storage for a particular
environment.

The attribute discovery rate is the area with the most potential for tuning. Most of
the TADDM modifiable parameters are contained in the collation.properties file:

<TADDM_install_dir>/dist/etc/collation.properties

This collation.properties file is a Java properties file with a list of keys and value
pairs separated by an equal (=) sign. In this file, the property with the most
impact on performance is the number of discovery worker threads:

Max number of discovery worker threads
com.collation.discover.dwcount=32

348 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Provided the server has sufficient spare capacity, you can increase this setting,
which allows more sensors to run in parallel. Two similar properties are:

Max number of seed creators
com.collation.discover.sccount=2
Max Number of Agent selectors
com.collation.discover.ascount=1

However, do not change these values. In most cases, to discover the attributes
of a CI, a sensor requires a Secure Shell (SSH) or Windows Management
Interface (WMI) session with the host computer where the CI resides. To improve
performance by reducing the session creation overhead, these sessions are
pooled and cached. The default pool sizes are sufficient in most cases. However,
when they are not large enough, they can limit the discovery rate. To monitor for
this condition, change the following property in the collation.properties file from
false to true:

com.collation.platform.session.ExtraDebugging=false

As with all changes to the collation.properties file, you must restart the server for
the change to take effect. After this change takes place and a discovery is run,
you can search the DiscoverManager logs for session pool wait time issues. The
text to search for in the logs is seconds for pool lock. Example 8-1 is an example
of performance degradation that is caused by session pool contention from the
DiscoverManager.log file.

Example 8-1 Performance degradation

2006-08-04 16:11:50,733 DiscoverManager [DiscoverWorker-34]
WindowsComputerSystemAgent(192.168.16.181) INFO
session.SessionClientPool - Session client [3x
ssh2:/admlxz@151.179.84.85]#9612508 waited 158.682 seconds for pool
lock

If the log shows excessive waiting for a session from the pool, you can increase
the pool size. There are two ways to increase the pool size. First, you can
globally increase the per host session pool by changing the following property in
the collation.properties file:

com.collation.platform.session.PoolSize=3

Important: The previous recommendation for the dwcount setting was 16, but
as hardware performance increases over time, the number of discovery
worker threads that hardware can support has also increased. In general, if
you have CPU cycles available during discoveries, you can increase this
setting. (You will also want to up the topopumpcount setting.)

 Chapter 8. Performance considerations 349

It is, however, unlikely that there is contention for sessions for all of the hosts or
even most of the hosts in the environment. The contention is probably restricted
to a smaller number of larger hosts for which a great many sensors run. TADDM
has a concept of a Scoped Property, which means that many of the properties in
the collation.properties file can have one value for general targets and another
value for specific targets. You can create a scoped property by appending an IP
address or a scope name to the property name, similar to the following example:

com.collation.platform.session.PoolSize.10.10.250.1=20

In this case, for all hosts, other than 10.10.250.1, the PoolSize is 3, but for
10.10.250.1, the PoolSize is 20. By looking at the log messages, such as the log
message in Example 8-1 on page 349, it is easy to determine for which hosts the
default session PoolSize is insufficient and make the appropriate changes to the
collation.properties file.

A related setting is the Gateway pool size. It sets the number of sessions allowed
between the server and the Windows Gateway. The property is:

com.collation.platform.session.GatewayPoolSize=10

In environments that consist mainly of Windows computer systems, adjust this
property upwards to be equal to the number of Discover worker threads.

8.3 Tuning storage performance

The second major area for tuning is storage. Storage of the discovery results can
be the discovery performance bottleneck if the number of sensors in the storing
state hovers around the value of the property:

com.collation.discover.observer.topopumpcount

This property is the number of parallel storage threads, which is one of the main
settings for controlling discovery storage performance; however, you must adjust
it carefully. Setting it too high can lead to contention, if more than one thread is
trying to update the same object at the same time. Setting this property too high
can also increase contention to the point that overall throughput is decreased.
Contention is more likely to occur when a small discovery scope is used or when
a large number of the discovered CIs are from a single server. If either of these
scenarios is commonplace in the environment of a given TADDM Server, set this
property to a small number. We recommend even setting this property as low as
one.

In general, however, topopumpcount needs to be less than the dwcount (refer to
8.2, “Discovery tuning” on page 344), because storage tends to be faster than

350 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

discovery. Experiment with settings between 1/2 and 2/3 of the dwcount setting
to find the optimal setting for your environment.

8.4 Caching user interface views

View caching was introduced simultaneously in TADDM 7.1 and TADDM 5.1 in
order to reduce the load time of commonly used but not regularly updated user
interface views. TADDM can be configured to use either a disk cache or an
in-memory cache; however, we recommend that you use the disk cache so that
you can reuse cached views even after restarting TADDM.

8.4.1 Understanding caching

There are two types of views that TADDM caches: tree views and graph views.
Tree views are the expanding navigation list that shows up on the bottom left side
of the TADDM UI. Graph views are the Topology Views that show the objects in
graphical format.

Both views can be cached so that the time that it takes to load is substantially
reduced. Caching the graph views shows a bigger impact in your user interface
usability, because topology graphs take substantially longer to build than the tree
views. You configure TADDM to just cache specific types of each of these views.

File structure of the TADDM cache
Views are cached in the TADDM home directory under dist/var/viewmanager.
Views and view data are cached as “.ser” files. The ser suffix stands for
“serialized object” and is a serialized Java object. The viewmanager directory
has a list of the views in the cache (views_in_cache.ser) and a view mapping file
(object_view_mappings.ser).

Under the viewmanager directory are two additional directories: graph and tree.
Each of these directories contains the actual serialized views that are cached, as
shown in Example 8-2 on page 352.

Note: There is a property in collation.properties that was previously used for
integration with other products:

com.collation.topomgr.generateExplicitRelationship=true

This property is no longer needed by any third-party integrations and needs to
be set to false. Leaving this setting at true has a significant adverse affect on
performance without any benefit.

 Chapter 8. Performance considerations 351

Example 8-2 Directories

bash-3.00$ /opt/cmdb/dist/var/viewmgr/graph

bash-3.00$ ls -l
total 928
-rw-r----- 1 cdtadm staff 14951 Feb 20 11:16
12FD02EF766535D78073D671AEB5DF1C_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 14386 Feb 20 11:18
19A3822D0A40393EA777B1FA159DDB26_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 12858 Feb 20 11:16
24BF9BEAD9FA3DAE93F2C5D14FDBE51E_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 16523 Feb 20 11:18
5A32F36C0BFF3E3284A461CBB79281E8_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 20551 Feb 20 11:16
66F23215BF5B3B1F91F33C102097D858_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 14957 Feb 20 11:19
66F23215BF5B3B1F91F33C102097D858_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 17120 Feb 20 11:16
6B0C7F20895630A98108568F191CAD4D_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 12858 Feb 20 11:16
6B4A4F6600D23C9EABB5416DC86846DB_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 17113 Feb 20 11:16
8BBC44A669153395B04FCA6753BB538E_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 14489 Feb 20 11:18
917F83EFF70E3A7CA599EBE92A9C26EF_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 17098 Feb 20 11:16
B366A37A1B95373CABDC552FC469A20F_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 30360 Feb 20 11:17
BADCD710E7F633FA834A073F40BCF381_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 17311 Feb 20 11:19
C4D9D5A852873E008879FF3213C8852B_Application Software Infrastructure
Topology_0.ser

352 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

-rw-r----- 1 cdtadm staff 18500 Feb 20 11:16
DC524696FD393DAFA1CB3581968E4284_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 20552 Feb 20 11:16
EFF653E260553CA6AD05E3B9E1CD22D9_Application Physical Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 14957 Feb 20 11:18
EFF653E260553CA6AD05E3B9E1CD22D9_Application Software Infrastructure
Topology_0.ser
-rw-r----- 1 cdtadm staff 142559 Feb 20 11:15
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF_Business Application Topology_0.ser
-rw-r----- 1 cdtadm staff 11290 Feb 20 11:16
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF_Physical Infrastructure Topology_0.ser

When to enable caching
View caching is already enabled in the TADDM product. View caching needs to
remain enabled in all production environments. Do not disable view caching.

8.4.2 Configuring caching

The default settings are shown in Example 8-3. The first three settings, which are
in your etc/collation.properties file, enable view caching by default. You must
change the fourth setting from “true” to “false”.

Example 8-3 Base recommended view cache settings

com.collation.view.cache.disk=true
com.collation.view.cache.optimization.enabled=true
com.collation.view.cache.disk.path=var/viewmgr
com.collation.view.prebuildcache.graph.appinfrastructure.enabled=false

The rest of the com.collation.view.prebuildcache.graph* settings can be true.

As for the location of the cache, these settings are important:

com.collation.view.cache.disk=true

Note: The following setting ships set to false, because there was a bug that
was introduced with TADDM V7.1 that caused the business application views
to be rebuilt too often for the cache to be of benefit:

com.collation.view.prebuildcache.graph.appinfrastructure.enabled=fal
se

 Chapter 8. Performance considerations 353

Store the cache on the disk (as opposed to storing it in memory):

com.collation.view.cache.disk.path=var/viewmgr

Without a leading “/”, the location of the cache files is under the
$COLLATION_HOME/dist directory. With a leading “/”, the location of the cache
files can be anywhere on your filesystem.

Reducing the amount of logging by View Manager
In addition to enabling the view cache, you also need to reduce the amount of log
messages for the View Manager.

Add the following line to your collation.properties file:

com.collation.log.level.com.collation.proxy.viewmgr.ViewManagerUtil=INF
O

This line limits the number of messages that are printed by TADDM in the
ViewManager log.

After enabling caching, you will not see an immediate improvement, because it is
a cache. Therefore, you will see an improvement over time as you navigate the
TADDM user interface and the cache is populated with your regularly used
views.

8.4.3 Maintaining the cache

If you have too many views cached in TADDM, the time that it takes to update all
of them might be longer than the time gained from having them. A good general
rule is that if you have more than 20 files in the view cache, you need to clean out
the cache.

To clean out the cache, delete the viewmanager directory, the graph and tree
subdirectories, and all of their contents.

Note that you cannot selectively remove files from the cache, because the
views_in_cache.ser file contains a list of the views that are expected to be
available in the cache.

Note: If views already exist in the cache, they will continue to be built even if
you turn the properties setting, which controls that view to false, in order to
avoid “out of sync” views. If you want to turn off a cache setting that was
previously on, clear out the cache after you modify the collation.properties
setting.

354 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

We also recommend that you review the readme files for any new interim fixes or
fix packs, because the view caching technology might change, and you want to
adjust your settings accordingly.

8.5 Database considerations

Next, we discuss a few database-related considerations.

8.5.1 Database indexes

There are a number of database indexes that you need to apply manually at the
end of an installation. In many environments, the clients have never applied the
database indexes. If you are experiencing performance problems or have any
doubt whether these indexes were applied, you can reapply them.

Back up the TADDM Database before completing this step. From a command
prompt, use one of the following procedures to run the commands:

� For Linux, Solaris, AIX, and Linux on System z operating systems, run:

cd <dist>/bin dbupdate.sh 71Indexes.sql > 71Indexes.out

If the database is DB2, also run:

cd <dist>/bin dbupdate.sh 71Db2Indexes.sql > 71Db2Indexes.out

� For Windows operating systems, run:

cd <dist>\bin dbupdate.bat 71Indexes.sql > 71Indexes.out

If the database is DB2, also run:

cd <dist>/bin dbupdate.bat 71Db2Indexes.sql > 71Db2Indexes.out

On Oracle systems, you can safely ignore the following error, because the error
message indicates that the index exists:

ORA-01408: Such column list already indexed

On DB2 systems, you can safely ignore the following error, because the error
message indicates that the index exists:

SQL0605W The index was not created, because the index <name> already
exists with the required description. SQLSTATE=01550 12.

 Chapter 8. Performance considerations 355

8.5.2 Database settings: DB2

Use the scripts in dist/etc/db2 to get the current recommended settings. If
possible, use these scripts to create the database or as a reference when you
create the database.

If your database was not created using the scripts, we recommend that you
review the dist/etc/db2/upd_db_cfg.sql script to make sure that you have all of
the appropriate configuration settings. Many of these configuration settings affect
performance. The settings can be applied at any time after the installation.

Example 8-4 The upd_db_cfg.sql script

UPDATE DATABASE CONFIG FOR CMDB USING
 DBHEAP 1800
 DFT_DEGREE ANY
 LOGBUFSZ 1024
 LOCKLIST 1500
 NUM_IOCLEANERS 9
 NUM_IOSERVERS 17
 LOGFILSIZ 4096
 LOGPRIMARY 6
 LOGSECOND 20
 APP_CTL_HEAP_SZ 1024
 SORTHEAP 1024
 AVG_APPLS 3
;
CONNECT TO CMDB;

ALTER BUFFERPOOL IBMDEFAULTBP
 SIZE 4000
;
ALTER BUFFERPOOL BUF8K
 SIZE 2000
;
ALTER BUFFERPOOL BUF32K
 SIZE 2000
;

The script updates the database configuration with the following settings:

� DBHEAP: Increased support to match other parameter settings

� DFT_DEGREE: Enables intra-partition parallelism

� LOGBUFSZ: Memory used as the log buffer (this value varies based on the
database size and activity)

356 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� LOCKLIST: Space used for locking

� NUM_IOCLEANERS: Used to clean updated pages in the bufferpool

� NUM_IOSERVERS: Used to handle the I/O requests to the database (this
setting is usually a number that is 2 or 3 higher than the number of physical
disk drives on your system)

� LOGFILSIZ: Size of the DB2 log files

� LOGPRIMARY: Number of log files

� NEWLOGPATH: The directory where log files will be created (this path must
exist)

� APP_CTL_HEAP_SZ: Application heap size

� SORTHEAP: Memory used for an individual sort

The script then updates the bufferpool size, which varies based on the size of the
database and the amount of physical memory on the database system.

So, for instance, you can run the following commands to increase the size of the
transaction logs:

db2 connect to <database name>
db2 update db cfg using LOGFILSIZ 4096
db2 update db cfg using LOGPRIMARY 6
db2 update db cfg using LOGSECOND 20
db2 disconnect <database name>
db2 quit

You can adjust the other settings in the same manner.

In addition to setting these database parameters, the following DB2 environment
setting provides added performance improvements:

db2set DB2_EVALUNCOMMITTED=YES

There is a caution about this setting. It is an instance-wide setting and alters the
way that the concurrent transactions are processed. Although this change is
good for TADDM, it is potentially bad for other databases in the instance.

8.5.3 Initial database statistics on DB2

After installing TADDM, you need to run statistics on the schema. You will want
to run the runstats_db2_catalog script after installing and starting TADDM for the
first time. (The schema is not created until the initial start of TADDM.)

 Chapter 8. Performance considerations 357

The runstats_db2_catalog script is located on the TADDM Server in
$COLLATION_HOME/support/bin/runstats_db2_catalog.sql.

You can use that tool by executing the following commands:

su - <db2 instance owner>
db2 connect to <cmdb>
db2 -xtf runstats_db2_catalog.sql

8.5.4 Running statistics

We recommend that you update the database statistics whenever there is a
significant change to the contents of the database, for example:

� After a discovery
� After a bulk load
� Other activities that change the database significantly

We recommend that you run statistics on a regularly scheduled basis, at least
weekly.

The DB2 query optimizer benefits from having up-to-date statistics on the
TADDM tables (for example, it helps to estimate how much buffer pool is available
at run time). There is a program in the <TADDM_install_dir>/dist/support/bin
called gen_db_stats.jy. This program outputs the database commands for either
Oracle or DB2 to update the statistics on the TADDM tables. The following
syntax, where <tmpdir> is a directory where you can create this file, shows how
you can use the program:

cd <TADDM_install_dir>/dist/support/bin
./gen_db_stats.jy ><tmpdir>/TADDM_table_stats.sql

After running gen_db_stats.jy has completed, copy the file to the database
server and run one of the following commands:

DB2: db2 -tvf
xOracle: sqlplus

8.5.5 Bufferpool

For db2 bufferpool settings, you want to aim for a 90% hit rate.

Before you can establish the correct number for the bufferpool size, you must
manage the tablespaces and the tables. You can manage the tablespaces and
the tables with the following buffer.sql script.

358 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

First, copy the script into /home/<instance_name>:

su <instance_name>
db2 -tf buffer.sql

The script in Figure 8-5 creates the buffer.out file. Evaluate this file or ask your
technical support for assistance.

Figure 8-5 Script to create the buffer.out file

The output in the buffer.out file looks similar to Figure 8-6 on page 360.

 Chapter 8. Performance considerations 359

Figure 8-6 Sample buffer.out file

For the output in Figure 8-6, we recommend the following settings:

IBMDEFAULTBP SIZE 60000
BUF8K SIZE 9000
BUF32K SIZE 3000

Use the following commands to implement the settings:

db2 ALTER BUFFERPOOL IBMDEFAULTBP SIZE 60000
db2 ALTER BUFFERPOOL BUF8K SIZE 9000
db2 ALTER BUFFERPOOL BUF32K SIZE 3000

Use the following command to make sure that the settings took effect:

db2 select bpname, npages from syscat.bufferpools

360 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

If you need further bufferpool tuning for performance reasons, and if you have
already implemented the previous settings, monitor the database to see the hit
ratios, and then, adjust accordingly.

8.6 Java Virtual Machine settings

You can modify the arguments with which the TADDM Java Virtual Machines
(JVMs) run. Most of the time, the default settings are sufficient.

8.6.1 Modifying the JVM arguments

There are a few additional parameters that you can set that affect performance
but are not directly related to discovery. Because TADDM is a Java application,
you can modify the various Java Virtual Machine (JVM) parameters from their
default values. There are two ways to modify the various Java Virtual Machine
(JVM) parameters.

To change an existing JVM option to another value, edit the following file:
<TADDM_install_dir>/dist/deploy-tomcat/ROOT/WEB-INF/cmdb-context.xml

If eCMDB is in use, modify the following file instead:
<TADDM_install_dir > /dist/deploytomcat/ROOT/WEB-INF/ecmdb-context.xml

To edit one of these files to change the settings for one of the TADDM services,
first find the service in the file. The following code is an example of the beginning
of a service definition in the XML file:

<bean id="Discover"
class="com.collation.platform.jini.ServiceLifecycle" initmethod="
start" destroy-method="stop">
<property name="serviceName">
<value>Discover</value>

Within the definition, there are elements and attributes that control the JVM
arguments, for example:

<property name="jvmArgs">
<value>-Xms8M;-Xmx512M;
-Djava.nio.channels.spi.SelectorProvider=
sun.nio.ch.PollSelectorProvider</value>
</property>

You can set the JVM arguments as a semi-colon separated list in the <property
name="jvmArgs">.

 Chapter 8. Performance considerations 361

You can also set JVM-wide settings in the collation.properties file. Add a property
“com.collation.jvmargs.ibm” or “com.collation.jvmargs.sun” to set a system-wide
JVM argument.

8.6.2 Java Max memory

Prior to Version 7.1, we often recommended to clients that they increase the
amount of memory that the JVM used as their discoveries or reports caused
TADDM to fail with an OutOfMemory condition. Increasing the available memory
without addressing the root cause of the failure only delayed the problem. In
Version 7.1, most of those situations have been rectified, but it is still possible to
fail with an OutOfMemory condition. If this type of failure happens, we strongly
recommend that you gather the javacore and heapdump files and open a
problem management record (PMR) with support. Work with support to identify
and fix the root cause before you increase the amount of memory available to the
JVM.

After you have gathered the correct problem determination documentation,
however, you can increase the amount of memory in the system that is failing.

To confirm that the problem is caused by an OutOfMemory error, open the
javacore files that are created during the time of the Discovery and are located in
dist/external/gigaspaces-4.1/bin. Find the Error in the top several lines of the file,
which might look similar to Example 8-5.

Example 8-5 Javacore

NULL

-
0SECTION TITLE subcomponent dump routine
NULL ===============================
1TISIGINFO Dump Event "systhrow" (00040000) Detail
"java/lang/OutOfMemoryError" received
1TIDATETIME Date: 2007/10/29 at 12:13:43
1TIFILENAME Javacore filename: /tmp/javacore.20071029.121119.577910.txt
Then search in the file for the text 'servicename', which may look like
this:
1CICMDLINE /CDT/CMDB/dist/external/jdk-1.5.0-AIX-powerpc/jre/bin/java
-Dcom.collation.LogFile=/CDT/CMDB/dist/log/topology.log
-Dcom.collation.servicename=Topology
-Dcom.collation.home=/CDT/CMDB/dist
-Djava.security.policy=/CDT/CMDB/dist/etc/policy.all -Dcom
In this example Topology is the servicename, or the process that caused
the OutOfMemory error.

362 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

You can then find the Topology service in cmdb-context.xml, as
described in section X, and up the -Xmx value in it’s jvmArgs property.
<property name="jvmArgs">

<value>-Xms768M;-Xmx1512M;-Dsun.rmi.transport.tcp.handsh
akeTimeout=0</value>

8.6.3 Java garbage collection

The Solaris JVM benefits from additional garbage collection settings.

Add the following settings for the com.collation.jvmargs.sun property in
collation.properties:

XX:+UseConcMarkSweepGC -XX:+HeapDumpOnOutOfMemoryError

8.7 Log settings for production

Excessive logging can affect performance as well. We recommend that you use
DEBUG level logging (refer to 9.2, “Installation logs” on page 369) while you are
deploying and configuring your environment; however, you probably want to
reduce the amount of logging when your environment is configured and stable.

We recommend a log level of INFO:

com.collation.log.level=INFO

8.8 Maintenance

There are several tasks that you either must or can perform on a regular basis to
keep your TADDM environment running well.

8.8.1 Clearing out unknown servers

When Tivoli Application Dependency Discovery Manager discovers servers,
sometimes there are running processes discovered that cannot be classified.
These processes are stored as unknown server processes in the Configuration
Management Database. After many discoveries are run, this list of unknown
server processes begins to get large. While creating custom server templates, it
is helpful to purge this list before running a discovery to aid in identifying the
target processes that are being used to create custom server templates.

 Chapter 8. Performance considerations 363

Additionally, when discovering multiple times with the wrong credentials, the
unknown server report will fill up with these machines. With the right credentials,
the server will no longer be unknown. Thus, the reason to purge the unknown
server report to start again.

Suppose that the client has an Oracle instance called SAMPLE running on port
xxxx with PID=yyyy. The first time that the client ran discovery (the client did not
have the right credentials), SAMPLE was discovered as an unknown server with
PID=yyyy. The second time that the client ran discovery (again, the client did not
have the right credentials), PID was changed to zzzz. Therefore, SAMPLE was
discovered again as a different unknown server with PID=zzzz. The third time,
the client provided the right credentials, and therefore, SAMPLE was finally
discovered as an Oracle instance and included in the list of Oracle instances.

As a consequence of this process, the database contains three instances of the
same object. In reality, you might have tens of instances for each object in the
unknown servers list, which makes the unknown server feature useless.

If a PID changes between discovery runs, the old runtime process remains in the
Unknown Server report.

Clearing unknown servers with a restart
The easiest way to clear the unknown servers requires that you restart TADDM.
You can clear the unknown servers list occasionally by setting
"com.collation.topobuilder.purgeunknownservers=true" and discovering a single
IP, such as the TADDM Server or the Windows gateway. It does not matter what
the target of this discovery is, all unknown servers are purged.

Clearing unknown servers without a restart
If you want to clear the unknown servers without a restart, there is a utility
available in the Tivoli Open Process Automation Library (OPAL) that can clear the
unknown servers while the product is running. The utility is called the Purge
Unknown Server Process utility and is available at the following URL:

http://catalog.lotus.com/wps/portal/topal/details?catalog.label=1TW10CC
1M

After the utility is downloaded and made executable, you can run the utility with
the administrator user name and password to purge your unknown servers.

8.8.2 Finding and applying fixes and updates

In this section, we discuss finding and applying TADDM fixes.

364 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://catalog.lotus.com/wps/portal/topal/details?catalog.label=1TW10CC1M

Determining your current product level
Fix pack levels are updates in the collation.properties file in the “com.colla-

tion.version” property.

Interim fix markers are labeled with the “efix” prefix. Look for the efix.* files in the
dist/etc directory. When you unzip the efix packs so that they place all of the files
in the correct directories, the fix will place a file in the /etc directory with a name
to match the efix pack.

For example, assuming that you are using all of the default directories, if you
apply efix.CMDB.5.1.0.20060815.zip, it will place a file named efix.20060815 in
the /opt/IBM/CCMDB/CMDB/dist/etc directory.

The other efix packs also create efix.* files in the dist/etc directory.

Note that this procedure does not apply to testfix files. You must document the
testfix file that you apply yourself, because there is no versioning on those files.
We suggest that you maintain the file name, date stamp, and file size in a
spreadsheet.

Determining the maintenance to apply
In general, interim fixes for the most recent version of TADDM are released once
a month and fix packs are released once a quarter. You can find the most recent
interim fixes and fix packs in the Downloads section of the TADDM support site:

http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliAppli
cationDependencyDiscoveryManager.html

In general, you want to apply the most recent fix pack and interim fix to the fix
pack.

Installing Interim fixes and fix packs
Fix packs are full product updates. They are allowed to change the database
schema and add additional features. Before applying a fix pack, you need to
back up your database and your TADDM installation.

Interim fixes are unzipped on top of existing install directions. You want to back
up the entire dist directory before installing them.

 Chapter 8. Performance considerations 365

http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliApplicationDependencyDiscoveryManager.html

366 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Chapter 9. Troubleshooting

This chapter provides a detailed look at troubleshooting IBM Tivoli Application
Discovery and Dependency Manager (TADDM). Most of the troubleshooting
focuses on issues that you might encounter during your initial discovery runs and
helps you identify the cause of failures in sensors. We spend a considerable
amount of time discussing Windows discovery, which is a cause of confusion and
issues in many environments.

In this chapter, we discuss:

� “Log files” on page 368
� “Installation logs” on page 369
� “Problem determination tools” on page 369
� “Log and Trace Analyzer” on page 382
� “Specific scenarios” on page 386”

9

Note: The official support site is updated regularly with authorized program
analysis report (APAR) descriptions, fixes, and technotes. If you run into a
problem that is not covered by this chapter, we recommend that you search
the support site:

http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliAp
plicationDependencyDiscoveryManager.html

© Copyright IBM Corp. 2008. All rights reserved. 367

http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliApplicationDependencyDiscoveryManager.html

9.1 Log files

The most useful troubleshooting tool in TADDM is the log files. TADDM logs are
based on an industry standard log4j format. Each separate Java virtual machine,
as well as certain components, creates its own log files. Log files can be
configured for varying amounts of data.

The logs are found in the dist/log directory in a TADDM directory. Here are the
most important log files:

� control.log: Lists the activity of the bootstrap of the initial services

� services/DiscoverManager.log: Lists the activity of all of the sensors. If you do
not have split sensor logging enabled, you can use this log to troubleshoot
sensor-specific discovery problems.

� local-anchor*.log: Lists the activity of Weblogic and WebSphere discoveries

� error.log: Lists errors from all subsystems

� tomcat.log: Lists the activity of the major server and the startup of all services

� services/TopologyManager.log: Interface between all other components and
the datastore

� cdm.logL Web portal logs are located here

� discover.log: Contains messages from the Discover jini service

� events-core.log: Contains messages from the events core jini service

� discover-admin.log: Contains messages from the DiscoverAdmin jini service

� proxy.log: Contains messages from the Proxy jini service

� topology.log: Contains messages from the topology jini service

� login.log: User login audit trail

� l2.log: Contains messages for the Layer 2

� Services/ApiServer.log: XML, Java, and Enterprise JavaBeans (EJB)
interfaces to the configuration management database (CMDB) are processed
here

� services/ChangeManager.log: ChangeManager works with StateManager to
process change events after discovery completes

� services/ReportsServer.log: Handles reports tasks

� services/MonitorStateManager.log: Processes discovery and change events

� services/ClientProxy.log: Start here for GUI issues. The GUI talks to the client
proxy exclusively

368 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� services/ViewManager.log: ViewManager builds the configuration item (CI)
navigation trees

� services/ProcessFlowManager.log: Event processing engine for Discovery

� services/DiscoverObserver.log: Moves completed workitems from
DiscoverManager to TopologyManager

You can turn on debug level logging by setting the following property in
$COLLATION_HOME/etc/collation.properties:

com.collation.log.level=DEBUG

This setting causes log files to grow quickly. Log files are rotated when they grow
to a specified size. You can control the size of each file with the following
property:

com.collation.log.filesize=20MB

You can control the number of rotated files with the following property:

com.collation.log.filecount=3

9.2 Installation logs

The installation logs are kept in entirely separate directories from the product’s
runtime logs:

� $COLLATION_HOME/../installLogs

� $COLLATION_HOME/../cdb_install*

� $COLLATION_HOME/../installCDT.stderr

� $COLLATION_HOME/../installCDT.stdout

� /root/InstallShield/Universal/common/Gen2/_vpddb/vpd.script

� /root/InstallShield/Universal/common/Gen2/_vpddb/vpd.properties

9.3 Problem determination tools

In the following section, we provide details about the tools that are available for
testing TADDM. TADDM testing includes testing of protocols, such as Secure
Shell (SSH) and Windows Management Interface (WMI), from the server (and
optionally, through the Windows gateway) and also running commands remotely
on the target machines.

 Chapter 9. Troubleshooting 369

The importance of using these test tools is that these commands use the access
profiles that are defined in TADDM to access the remote system. In addition to
testing the communications infrastructure (including the TADDM gateway for
certain protocols), using these test tools verifies that the user ID and passwords
are correctly configured.

Navigate to the /opt/IBM/cmdb/dist/support/bin directory. Next, we identify a few
of the tools found in this directory and discuss the command syntax to use.

The testing tools that are located in the /opt/IBM/cmdb/dist/support/bin directory
are:

testhang.jy Helps determine if hanging sessions can be cancelled.

testjdbc.jy Tests database access through JDBC.

testos.jy Returns all of the operating system details from a specific
system.

testping.jy Returns the number of active IP interfaces within a
specified scope.

testportmap.jy Provides the entire list of active ports on a host.

testportscan.jy Determines to which session ports a target system is
listening and, thereby, which protocols are supported.

testprimaryip.jy Returns the primary IP address of a multi-homed host.

testsnmp.jy Verifies the read community name that is used to access
the Simple Network Management Protocol (SNMP)
Management Information Base (MIB) at a host.

testssh.py Executes a command on a host using SSH.

testwmi.jy Verifies that WMI is installed on a system.

wmiexec.jy Executes a command on a Windows-based system.

9.3.1 testhang.jy

Use the testhang.jy script to verify that hanging sessions with a UNIX host are
successfully backed out, as shown in Example 9-1.

Usage: testhang.jy <ip>

The following tools are provided with TADDM on an as-is basis. The purpose
of these tools is to help test and debug problems with the Configuration
Discovery and Tracking setup and use.

370 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

This script requires valid Access List entries, anchor hosts, and Windows
gateways to access the target device.

Example 9-1 Using testhang.jy

[root@taddm02 bin]# ./testhang.jy 9.3.5.212
Testing ...:9.3.5.212
...
2006-06-27 17:54:55,370 [main] INFO session.SessionFactory -
getNewSession(9.3.5.212) portList=null
2006-06-27 17:55:05,484 [main] INFO util.PortScanner - PortScanner: scan for
9.3.5.212 complete; returning: [22]
2006-06-27 17:55:10,488 [main] INFO session.Ssh2SessionClient - 9.3.5.212:
SSH version=[SSH-1.99-OpenSSH_3.9p1] reuse=true
2006-06-27 17:57:10,663 [main] ERROR session.SshSessionClient - readAsString:
IOException: InputStreamPipe closed after 0 bytes
2006-06-27 17:57:10,663 [main] WARN session.SshSessionClient - Command [cat]
failed in session ssh2:/root@9.3.5.212: timed out a
fter 120.003 seconds
Execute Failed
2006-06-27 17:57:10,892 [main] INFO session.Ssh2SessionClient - 9.3.5.212:
SSH version=[SSH-1.99-OpenSSH_3.9p1] reuse=true
Result is :anaconda-ks.cfg
anchor-setup.sh
coll
coll4.0
Desktop
dlmgr_.pro
install.log
install.log.syslog
InstallShield
Result is :total 116
-rw-r--r-- 1 root root 1216 Apr 25 12:07 anaconda-ks.cfg
-rw-r--r-- 1 root root 2308 Jun 20 12:05 anchor-setup.sh
drwxr-xr-x 3 root root 4096 May 2 14:25 coll
drwx------ 8 root root 4096 Jun 20 12:05 coll4.0
drwxr-xr-x 3 root root 4096 Apr 27 10:11 Desktop
-rw-r--r-- 1 root root 15 Apr 25 16:23 dlmgr_.pro
-rw-r--r-- 1 root root 56590 Apr 25 12:07 install.log
-rw-r--r-- 1 root root 9506 Apr 25 12:07 install.log.syslog
drwxr-xr-x 3 root root 4096 May 2 13:07 InstallShield

 Chapter 9. Troubleshooting 371

9.3.2 testjdbc.jy

Use the testjdbc.jy script to verify JDBC connectivity to a database.

Usage: testjdbc.jy {d[b2]|o[oracle]|s[ybase]} {ip|host} port user
password {oracle SID|sybase db|db2 db}

Example 9-2 shows a successful attempt to connect to the IBM Tivoli Intelligent
Orchestrator (TIO) database (tiodb). This database is owned by the instance that
is listening on port 50000 on the tioserver system (9.3.5.216) and using the
credentials of the tioadmin user (tioadmin/smartway).

Example 9-2 Using testjdbc.jy to connect to tiodb

[root@taddm02 bin]# ./testjdbc.jy db2 9.3.5.216 50000 tioadmin smartway tiodb
Testing ...:db2 9.3.5.216 50000 tioadmin smartway
optional SID/db:tiodb
Establishing DB2 connection
Connection string: jdbc:db2://9.3.5.216:50000/tiodb
Connection successful.
Version: 8020400

9.3.3 testssh.py

Use the testssh.py utility to verify SSH access to a system.

The testssh.py script uses the Access List credentials to access a system in your
infrastructure and execute a command specified on invocation.

Usage: testssh.py <ip> <command>

To get the universal time and date settings for a system, you can use:

[root@taddm02 bin]# ./testssh.py 9.3.5.216 "date -u"
Testing ...:9.3.5.216 date -u
...
Result is :Sat Jun 17 01:01:06 UTC 2006

Note: If the command that is passed to testssh.py is made up of more than
one word, enclose the entire command in double quotation marks.

372 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

9.3.4 testos.jy

Use the testos.jy script to verify that Configuration Discovery and Tracking can
access operating system information about a system that is identified by the IP
address, as shown in Example 9-3.

The testos.jy program is invoked using the IP address as the only argument.

Usage: testos.jy <ip>

The testos.jy script requires valid Access List entries, anchor hosts, and
Windows gateways to access the target device.

Example 9-3 shows how to use the testos.jy script properly.

Example 9-3 Using testos.jy

[root@taddm02 bin]# ./testos.jy 9.3.5.212 ls
Testing os layer on ip 9.3.5.212
...
2006-06-28 08:53:12,741 [main] INFO session.SessionFactory -
getNewSession(9.3.5.212) portList=null
2006-06-28 08:53:22,847 [main] INFO util.PortScanner - PortScanner: scan for
9.3.5.212 complete; returning: [22]
2006-06-28 08:53:27,248 [main] INFO session.Ssh2SessionClient - 9.3.5.212:
SSH version=[SSH-1.99-OpenSSH_3.9p1] reuse=true
[testos] computer system: ... before
2006-06-28 08:53:27,999 [main] INFO ip.SystemSigner - System signature set
to: 9.3.5.212(0011250D31BA)
[testos] computer system:
{signature=9.3.5.212(0011250D31BA);type=ComputerSystem;systemId=7f0100;OSRunnin
g=interface com.collation
.platform.model.topology.sys.linux.Linux;fqdn=taddm01;name=taddm01}
[testos] opsys: ... before
[testos] opsys: {osId=1;OSName=Linux;name=Linux;parent=interface
com.collation.platform.model.topology.sys.linux.LinuxUnitaryCompu
terSystem}
[testos] command: kill: kill
[testos] command: port map: lsof -nP -i | awk '{print $2, $8, $9}' | sort -k 2
| uniq -f 1
[testos] command: ps users: ps auxw
[testos] hostid: 7f0100
[testos] hostname: taddm01
[testos] architecture: i686

[testos] kernel architecture: i686
[testos] kernel version: 2.6.9-34.ELsmp
[testos] pid to runtime process map: {}
[testos] computer model: i686

 Chapter 9. Troubleshooting 373

[testos] computer system:
{signature=9.3.5.212(0011250D31BA);type=ComputerSystem;systemId=7f0100;OSRunnin
g=interface com.collation
.platform.model.topology.sys.linux.Linux;fqdn=taddm01;name=taddm01}
[testos] CPU speed: 2993.323

[testos] CPU type: Intel(R) Pentium(R) 4
[testos] Number of CPUs: 2

2006-06-28 08:53:28,936 [SSH2TransportRX] WARN collation.stderr - mount
clntudp_create: RPC: Program not registered
[testos] exported NFS file systems:
[testos] network interfaces: [9.3.5.212]
[testos] ip forwarding?: 0
[testos] ip interfaces: array([{ipNetwork=interface
com.collation.platform.model.topology.net.IpNetwork;L2Interface=interface com.
collation.platform.model.topology.net.L2Interface;ipAddress=interface
com.collation.platform.model.topology.net.IpAddress}, {ipNet
work=interface
com.collation.platform.model.topology.net.IpNetwork;L2Interface=interface
com.collation.platform.model.topology.net
.L2Interface;ipAddress=interface
com.collation.platform.model.topology.net.IpAddress}],
com.collation.platform.model.topology.net.
IpInterface)
[testos] manufacturer: Red Hat
[testos] memory size: 2017

[testos] nmap: /opt/IBM/cmdb/dist/external/nmap/Linux/nmap
[testos] os name: Linux
[testos] os path:
PATH=$PATH:/usr/local/bin:/bin:/usr/bin:/usr/sbin:/sbin:/usr/X11R6/bin;
[testos] os type: 2
[testos] os version: Red Hat Enterprise Linux ES release 4 (Nahant Update 3)
except...
[testos] computer system: ... before
[testos] computer system:
{signature=9.3.5.212(0011250D31BA);type=ComputerSystem;systemId=7f0100;OSRunnin
g=interface com.collation
.platform.model.topology.sys.linux.Linux;fqdn=taddm01;name=taddm01}
[testos] opsys: ... before
[testos] opsys: {osId=1;OSName=Linux;name=Linux;parent=interface
com.collation.platform.model.topology.sys.linux.LinuxUnitaryCompu
terSystem}
[testos] command: kill: kill
[testos] command: port map: lsof -nP -i | awk '{print $2, $8, $9}' | sort -k 2
| uniq -f 1
[testos] command: ps users: ps auxw
[testos] hostid: 7f0100

374 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

[testos] hostname: taddm01
[testos] architecture: i686

[testos] kernel architecture: i686
[testos] kernel version: 2.6.9-34.ELsmp
[testos] pid to runtime process map: {}
[testos] computer model: i686

[testos] computer system:
{signature=9.3.5.212(0011250D31BA);type=ComputerSystem;systemId=7f0100;OSRunnin
g=interface com.collation
.platform.model.topology.sys.linux.Linux;fqdn=taddm01;name=taddm01}
[testos] CPU speed: 2993.323

[testos] CPU type: Intel(R) Pentium(R) 4
[testos] Number of CPUs: 2

[testos] exported NFS file systems:
[testos] network interfaces: [9.3.5.212]
[testos] ip forwarding?: 0
[testos] ip interfaces: array([{ipNetwork=interface
com.collation.platform.model.topology.net.IpNetwork;L2Interface=interface com.
collation.platform.model.topology.net.L2Interface;ipAddress=interface
com.collation.platform.model.topology.net.IpAddress}, {ipNet
work=interface
com.collation.platform.model.topology.net.IpNetwork;L2Interface=interface
com.collation.platform.model.topology.net
.L2Interface;ipAddress=interface
com.collation.platform.model.topology.net.IpAddress}],
com.collation.platform.model.topology.net.
IpInterface)
[testos] manufacturer: Red Hat
[testos] memory size: 2017

[testos] nmap: /opt/IBM/cmdb/dist/external/nmap/Linux/nmap
[testos] os name: Linux
[testos] os path:
PATH=$PATH:/usr/local/bin:/bin:/usr/bin:/usr/sbin:/sbin:/usr/X11R6/bin;
[testos] os type: 2
[testos] os version: Red Hat Enterprise Linux ES release 4 (Nahant Update 3)

9.3.5 testping.jy

The testping.jy script gets the number of IP interfaces that are currently active in
a specific scope. The scope might identify a single IP device, a subnet, or a
range.

 Chapter 9. Troubleshooting 375

You invoke the testping.jy program by using the scope type and IP addresses or
subnet and netmask information as arguments.

Usage: testping.jy -t type <address info>

 -t ip <ipaddress>
 -t net <network> <netmask>
 -t range <startip> <endip>

To get the number of active IP interfaces on specific hosts, use the
ip <ipaddress> invocation:

[root@taddm bin]# ./testping.jy -t ip 9.3.5.216
Ping type is: ip
responder count: 1

To see how many IP interfaces are responding from a specific subnet, use the
net <subnet> <netmask> invocation:

[root@taddm bin]# ./testping.jy -t net 9.3.5.0 255.255.255.0
Ping type is: net
responder count: 74

To get the number of active IP interfaces within a range, you can use the
range <startip> <endip> notation:

[root@taddm bin]# ./testping.jy -t range 9.3.5.1 9.3.5.100
Ping type is: range
responder count: 45

9.3.6 testportmap.jy

Use the testportmap.jy script to see which ports are active on a device.

Usage: testportmap.jy <ip>

The testportmap.jy script requires valid Access List entries, anchor hosts, and
Windows gateways to access the target device. Example 9-4 shows you how to
use the testportmap.jy script properly.

Example 9-4 Using testportmap.jy

[root@taddm02 bin]# ./testportmap.jy 9.3.5.225
Testing portmap on ip 9.3.5.225
...
2006-06-27 16:38:31,867 [main] INFO session.SessionFactory -
getNewSession(9.3.5.225) portList=null
2006-06-27 16:38:41,972 [main] INFO util.PortScanner - PortScanner: scan for
9.3.5.225 complete; returning: [22]

376 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

2006-06-27 16:38:46,295 [main] INFO session.Ssh2SessionClient - 9.3.5.225:
SSH version=[SSH-1.99-OpenSSH_3.9p1] reuse=true
Result is:
2540 *:111
2540 *:111 (LISTEN)
2783 *:113 (LISTEN)
2802 127.0.0.1:25 (LISTEN)
20827 127.0.0.1:32774->127.0.0.1:32774
24470 127.0.0.1:631 (LISTEN)
20827 *:1920 (LISTEN)
2768 *:22 (LISTEN)
2560 *:32768
2560 *:32769 (LISTEN)
20827 *:32836 (LISTEN)
20827 *:32837 (LISTEN)
20827 *:3661 (LISTEN)
29192 *:37646 (LISTEN)
3873 *:523
3873 *:523 (LISTEN)
20827 *:6014 (LISTEN)
2560 *:616
24470 *:631
2476 *:68
8405 9.3.5.225:22->9.3.4.165:35843 (ESTABLISHED)
20827 9.3.5.225:32838->9.3.4.174:1918 (ESTABLISHED)
29192 9.3.5.225:32977->9.3.5.212:37645 (ESTABLISHED)
PID NODE NAME

9.3.7 testportscan.jy

Use the testportscan.jy tool to verify if the device is listening on any of the ports
listed in Table 9-1 to determine which protocol to use to access the system.

Table 9-1 Ports and related protocol

Usage: testportscan.jy <ip> [<wait-time> <attempts>]

Port Protocol

22 sshd

23 telnet

135 DCOM

 Chapter 9. Troubleshooting 377

Example 9-5 shows how to determine on which ports the host on the IP address
9.3.5.174 listens: 22, 23, or 135. Between each of the four attempts, the script
waits two seconds.

Example 9-5 Using testportscan.jy

[root@taddm02 bin]# ./testportscan.jy 9.3.5.174 2 4
Testing portscan on ip 9.3.5.174 with 4 attempts and a waittime of 2
seconds.
2006-06-27 17:20:41,371 [main] INFO util.PortScanner - PortScanner:
scan for 9.3.5.174 complete; returning: [23, 22]
2006-06-27 17:20:49,394 [main] INFO util.PortScanner - PortScanner:
scan for 9.3.5.174 complete; returning: [23, 22]
2006-06-27 17:20:57,424 [main] INFO util.PortScanner - PortScanner:
scan for 9.3.5.174 complete; returning: [23, 22]
2006-06-27 17:21:05,441 [main] INFO util.PortScanner - PortScanner:
scan for 9.3.5.174 complete; returning: [23, 22]
[root@taddm02 bin]# ./testportscan.jy 9.3.4.174 1 4
Testing portscan on ip 9.3.4.174 with 4 attempts and a waittime of 1
seconds.

You might experience a situation where the script never ends. To correct this
situation, use the script in Example 9-6 on page 379, which shows a working
version of the testportscan.jy script. In the code that is listed in Example 9-6 on
page 379, we highlighted, in bold, the changes compared to the version
delivered with the generally available (GA) code of IBM Tivoli Change and
Configuration Management Database Configuration Discovery and Tracking
V1.1.

Important error information: If you receive an error similar to this error
message:

Traceback (innermost last):
 File "./testportscan.jy", line 41, in ?
TypeError: com.collation.platform.util.PortScanner(): 1st arg can't
be coerced to String

Change the line in the script that reads:

scanner = PortScanner(ia, waittime, numAttempts)

to

scanner = PortScanner(ip, waittime, numAttempts)

378 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Example 9-6 testportscan.jy

#!/usr/bin/env ./jython_coll
$Id: testportscan.jy,v 1.3 2005/03/22 22:15:24 jbarrera Exp $
Copyright 2001-2005 Collation Inc. All Rights Reserved
This software is the proprietary information of Collation Inc.
Use is subject to license terms.
#
import sys
import string
import java

from java.lang import *
from java.net import InetAddress
from java.util import Collections

from com.collation.platform.util import PortScanner

try:
 ip = sys.argv[1]
 try:
 arg2 = sys.argv[2]
 except:
 arg2 = "10"
 try:
 arg3 = sys.argv[3]
 except:
 arg3 = "3"
 waittime = 1000 * string.atoi(arg2)
 numAttempts = string.atoi(arg3)
 print "Testing portscan on ip", ip, "with", numAttempts,
"attempts and a waittime of", arg2, "seconds."
except:
 print "Usage: testportscan <ip> <waittime-in-seconds>
<num_attempts>"
 System.exit(0)

oldlist = None
ia = InetAddress.getByName(ip)

i = numAttempts;
while i >= 1:
 i = i - 1;
 scanner = PortScanner(ip, waittime, numAttempts)
 ports = [22, 23, 135]

 Chapter 9. Troubleshooting 379

 list = scanner.scanPorts(ports)
 Collections.sort(list)
 if oldlist != None and not list.equals(oldlist):
 print "*** lists are different!"
 print "old: ", oldlist
 print "new: ", list
 break
 oldlist = list
System.exit(0)

9.3.8 testprimaryip.jy

Use the testprimaryip.jy script to get the primary IP address of a multi-homed
device, as shown in Example 9-7.

Usage: testprimaryip.jy <ip>

The testprimaryip.jy script requires valid Access List entries, anchor hosts, and
Windows gateways to access the target device.

Example 9-7 Using testprimaryip.jy

[root@taddm02 bin]# ./testprimaryip.jy 9.3.5.252
Testing : 9.3.5.252
Primary IP : 9.3.5.252

9.3.9 testsnmp.jy

Use the testsnmp.jy script to verify the community name that is used to access
the SMNP MIB at a target system, as shown in Example 9-8.

Usage: testsnmp.jy -h <host> -c <community>

Example 9-8 Using testsnmp.jy

[root@taddm02 bin]# ./testsnmp.jy -h 9.3.5.216 -c public
Testing 9.3.5.216 with community public
GET of .1.3.6.1.2.1.1.5.0 returned tioserver.tivdemo.com

380 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

9.3.10 testwmi.jy

Use the testwmi.jy script to verify the WMI connectivity between a Windows
gateway and a Windows target, as shown in Example 9-9.

The testwmi.jy script uses the Access List credentials to access the
Windows-based system, so it fails unless proper Access List entries to connect
to both the Windows gateway (using SSH) and the target system do not exist.

Usage: testwmi.jy <ip>

Example 9-9 Using testwmi.jy

[root@taddm02 bin]# ./testwmi.jy 9.3.4.174
Testing WMI on host 9.3.4.174
...
2006-06-27 16:28:47,785 [main] INFO session.SessionFactory -
getNewSession(9.3.4.174) portList=null
2006-06-27 16:28:57,888 [main] INFO util.PortScanner - PortScanner: scan for
9.3.4.174 complete; returning: [135]
2006-06-27 16:29:06,875 [main] INFO util.PortScanner - PortScanner: scan for
9.3.5.252 complete; returning: [22]
2006-06-27 16:29:07,868 [main] INFO session.Ssh2SessionClient - 9.3.5.252: SSH
version=[SSH-2.0-1.75 sshlib: WinSSHD 4.13] reuse
=true
2006-06-27 16:29:08,526 [main] INFO session.UnscopedGateway -
Gateway.prepare(9.3.5.252): first attempt
2006-06-27 16:29:11,043 [main] INFO session.UnscopedGateway -
Gateway.prepare(9.3.5.252): succeeded!
2006-06-27 16:29:11,531 [main] INFO session.AbstractWindowsSessionClient -
GetDesiredVersion returns version 20060607 after 0 se
conds.
2006-06-27 16:29:12,093 [main] INFO session.AbstractWindowsSessionClient -
GetVersion returns version 20060607 after 0 seconds.
2006-06-27 16:29:12,719 [main] INFO session.AbstractWindowsSessionClient -
GetVersion returns version 20060607 after 0 seconds.

9.3.11 wmiexec.jy

Use the wmiexec.jy script to execute a command on a Windows-based target
system using the WMI protocol.

The wmiexec.jy script uses the Access List credentials to access the
Windows-based system, so it fails unless proper Access List entries to connect
to both the Windows Gateway (using SSH) and the target system do not exist.

 Chapter 9. Troubleshooting 381

Usage: wmiexec.jy <ip> <command>

Example 9-10 shows how we execute the hostname command on a remote
system (9.3.5.174) through a Windows gateway (9.3.5.252).

Example 9-10 Using wmiexec.jy

[root@taddm02 bin]# ./wmiexec.jy 9.3.4.174 "hostname"
Testing ...:9.3.4.174 hostname
...
2006-06-27 16:26:31,528 [main] INFO util.PortScanner - PortScanner: scan for 9.3.5.252
complete; returning: [22]
2006-06-27 16:26:32,692 [main] INFO session.Ssh2SessionClient - 9.3.5.252: SSH
version=[SSH-2.0-1.75 sshlib: WinSSHD 4.13] reuse
=true
2006-06-27 16:26:33,320 [main] INFO session.UnscopedGateway - Gateway.prepare(9.3.5.252):
first attempt
2006-06-27 16:26:35,729 [main] INFO session.UnscopedGateway - Gateway.prepare(9.3.5.252):
succeeded!
2006-06-27 16:26:36,216 [main] INFO session.AbstractWindowsSessionClient - GetDesiredVersion
returns version 20060607 after 0 seconds.
2006-06-27 16:26:36,734 [main] INFO session.AbstractWindowsSessionClient - GetVersion returns
version 20060607 after 0 seconds.
2006-06-27 16:26:37,390 [main] INFO session.AbstractWindowsSessionClient - GetVersion returns
version 20060607 after 0 seconds.
Result is :taddm99

9.4 Log and Trace Analyzer

With the Log and Trace Analyzer, you can gather system and performance data
from local and remote systems. You can use this data for problem determination
in case a less than optimal system event occurs.

You can use the Log and Trace Analyzer to create resource sets. Resource sets
are sets of definitions, which contain the path locations of the logs that you need
to examine and the levels of information that the logs contain. You can keep
customized definitions to reuse. The definitions provide the same set of
instructions about where to find a log and what kind of information to gather from
the log, which saves time during subsequent log imports.

The Log and Trace Analyzer also makes it possible for you to download and
store symptom database catalogs to your local system. These catalogs provide
detailed diagnostic solutions to a variety of scenarios, which can provide
direction to your troubleshooting tasks.

382 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Downloading the Log and Trace Analyzer
To download the Log and Trace Analyzer, complete the following steps:

1. If you do not have the IBM Support Assistant (ISA) installed, go to the ISA
Web site to download the software. Instructions for downloading and installing
the ISA are on the ISA Web site:

http://www.ibm.com/software/support/isa/

2. Using the ISA built-in Updater component, download and install the ISA
plug-in for IBM Tivoli Application Dependency Discovery Manager 7.1 from
the IBM Web site. Instructions for downloading and installing the ISA plug-in
are on the ISA Web site:

http://www.ibm.com/software/support/isa/

3. Using the ISA built-in Updater component, download and install the plug-in for
the Log and Trace Analyzer from the IBM Web site. The Log and Trace
Analyzer plug-in is included in the list of plug-ins for Common Component
Tools:

http://www.ibm.com/software/support/isa/

4. After the installation of the Log and Trace Analyzer is complete, start the ISA.

5. From the list of tasks, click Tools.

6. From the list of products, click IBM TADDM 7.1.

7. From the list of tools for IBM TADDM 7.1, click Log and Trace Analyzer. The
Log and Trace Analyzer starts working.

Importing TADDM log files to the Log and Trace Analyzer
To import the TADDM log files to the Log and Trace Analyzer, complete the
following steps:

1. Copy the relevant log files from the TADDM Servers to the system where you
installed the IBM Support Assistant workbench. Put the log files for each
server in a unique directory, for example, c:\TADDM\logs\serverxxxx\...

2. Import the TADDM log files. The Log and Trace Analyzer organizes related
log files into log sets. You can use log sets to import and analyze a set of
related log files. This facility is used to organize and import your TADDM log
files. Log set definitions provide information to the Log and Trace Analyzer
specifying where log and trace data reside and describing what type of data
to gather from local and remote systems. The Log and Trace Analyzer allows
you to import predefined log sets that contain the necessary path information
required for retrieving log files on demand. There are two ways to import the
log files:

a. Create the initial TADDM log set:

 Chapter 9. Troubleshooting 383

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/

i. Click File Import Log File.

ii. Create a new log set.

iii. Type the name for the log set. For example, you can type the following
text: TADDM Log files for server xxxx.

iv. Click Add.

v. In the Name Filter window, to limit the list of log files to the TADDM log
files, type Discovery.

vi. Select the type of log file that you are adding to the log set.

vii. Type the name of the log file on your local system. Ensure that the type
of log file matches the log file that you specified.

viii.Enter the correct version of the TADDM product that corresponds to
the log file. Refer to the Log and Trace Analyzer online help for
additional options.

ix. To add the log file to the log set, click OK.

x. For every log file that you want to include in the log set, repeat steps i
through ix. The first time that you create the log set, you will save time
later by including every log file that you want to include in the log set.

b. Reuse an existing TADDM log set:

i. Select File Import Log File.

ii. Select an existing Log Set Definition from the drop-down list of defined
log sets.

iii. If necessary, change the contents of the log set definition. You can add,
edit, or remove from the list of log files in the log set.

c. To indicate that the file needs to be imported to the log set, select the
check box next to the log file.

d. To import the log files, click Finish.

You can create and reuse as many log sets as you need. For example, when
importing log files from multiple servers, you need more than one log set.

Analyzing TADDM log files with the Log and Trace Analyzer
Using the Log and Trace Analyzer, you can correlate multiple TADDM log files
into a single view. The TADDM log files can be combined in a single view, which
is ordered by time stamp, to correlate the operation of the TADDM components.
There are two ways to correlate log files:

� Simple: To correlate all imported log files, complete the following steps:

a. In the Log and Trace Analyzer navigation tree view, right-click Logs.

384 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

b. Click View All Logs.

� Advanced: To correlate a set of log files by creating a custom correlation,
complete the following steps:

a. In the Log and Trace Analyzer navigation tree view, right-click
Correlations.

b. Click New Log Correlation.

c. In the window that is displayed, type the name for the correlation.

d. Add the log files that you want to include for the correlation.

e. Click Finish.

f. Refresh the navigation tree view.

g. In the navigation tree view, right-click the correlation name that you typed
and click Open With Log View.

After you create a view of the logs, you can organize the log data to isolate
problems. The following list identifies several of the ways that you can organize
the data:

� Sort log records: For example, you can sort by time, component, and server
name.

� Highlight log records: For example, you can highlight all error events in red or
show all events from a specific component in blue. Highlighting is similar to
filtering, but instead of eliminating data from a view, you can highlight the
relevant information within the full list of events.

� Filtering log records: You can narrow the scope of a problem and the data
shown based on filter criteria. Examples of filter criteria include time stamps,
severity, component, and server.

� Finding log records: You can search for specific information in a log file. For
example, you can search to see the events that are related to interaction with
a specific server or user.

For more information about how to organize the data, in the Log and Trace
Analyzer online help, search for the “Analyzing log files” topic. “Filtering, Sorting,
Finding, and Highlighting” is a subheading in this topic.

In addition, there are other topics in the online help that you might find useful:

� When trying to correlate log files from multiple servers, the time clocks on
those servers can be out-of-sync. This synchronization problem might be
something simple, such as different time zones, or more subtle, such as a
clock being a few milliseconds off from another server’s clock. The Log and
Trace Analyzer imbeds a function to synchronize the time between multiple
log files by allowing you to adjust the time stamps in a log file. For more

 Chapter 9. Troubleshooting 385

information, refer to the topic “Synchronizing time of log records for
distributed applications” in the Log and Trace Analyzer online help.

� You can use symptom catalogs to quickly recognize known problems. The
Log and Trace Analyzer provides a log analysis capability that allows it to
recognize known problems that are defined in a knowledge database, called
the “symptom catalog”. IBM provides a symptom catalog for known problems
with several products, including TADDM. It also provides a way for you to
capture and define your own symptom information. For more information,
refer to the topic titled “Synchronizing time of log records for distributed
applications” in the Log and Trace Analyzer online help.

9.5 Specific scenarios

Next, we describe several common scenarios when working with TADDM,
related questions, and possible explanations for why the scenarios occur.

9.5.1 Common problems

In this section, we discuss common problems and possible reasons behind these
problems.

I have a software process that was not discovered, and I want to know why:

� Discovery of certain applications requires an entry in the Access List. You can
search for the specific software on the support site for details.

� Only processes with TCP connections are discovered. Other processes are
discarded. Run the lsof command to verify if the process in which you are
interested has a TCP connection.

I know that two software processes talk to each other through TCP, but this
dependency is not listed or shown:

� Connections between software servers are detected only if the TCP
connection is established at the time that the discovery is run.

� The connection might be discovered eventually after a series of discovery
runs, or a manual connection can be created.

Why are the connections between software processes on the same machine not
shown:

� By default, servers with listening ports on loopback interfaces are
suppressed.

386 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� The relationships between software processes are controlled by the
com.collation.platform.os.ignoreLoopbackProcesses=true property in the
collation.properties file.

� The connections might not show with tunnelled connections.

Why is the Environment section of the Runtime tab for an application empty:

� The ps command on Linux needs to be setuid, or sudo access must be
granted to the Collation Service Account.

� The system-V ps command on Hewlett-Packard UNIX (HP-UX) is unable to
show Environment variables.

� The user must be the root user on HP-UX and Linux. Use the sudo command.

9.5.2 Troubleshooting problems with sensors

In this section, we provide best practices for troubleshooting problems with
sensors.

Suggestions for searching logs
In this section, we provide suggestions for viewing and browsing log files in order
to find the most pertinent information:

� Use less, grep, and vi for searching logs in UNIX.

� If you install Cygwin, you can use these commands on Windows.

� Start at the end of the file and search backwards.

� Search for ERR and look for stack traces that are generated when an
exception happens.

� Filter the DiscoverManager log by using the following methods:

– Make a subset of the log by using the grep command for the sensor in
which you are interested.

– If the result is still too verbose, use Target or Thread parameters for
additional filtering.

– If you are looking at an entire log, start by finding the Target/Sensor
combination in which you are interested, such as
IpDeviceSensor-9.3.5.184. Follow its execution with repeated Find-next
searches on the Thread ID, such as DiscoverWorker-10.

– If you are searching a filtered log and find something interesting, note the
time stamp, for example, 2007-08-29 21:42:16,747. Then, look in the full
log for the lines surrounding that time stamp.

 Chapter 9. Troubleshooting 387

Understanding DiscoverManager log messages
Figure 9-1 shows the parts of a DiscoverManager log message.

Figure 9-1 Components of a log message

Troubleshooting specific sensors
There are many sensors that ship with TADDM. Many of them have
troubleshooting information that is available in a document called Best Practices
for using TADDM sensors. In this section, we list the sensors that are included in
the white paper and where to find that information. The Best Practices for using
TADDM Sensors white paper is available at:

http://www-1.ibm.com/support/docview.wss?uid=swg27010399

These are the sensors that are included in the white paper:

� Apache
� Checkpoint
� CheckpointSNMPAgent
� Citrix
� DB2 database
� Internet Information Services (IIS)
� i5/OS®
� JBoss server
� MQServer
� Oracle database
� Oracle Application Server
� SAP – CCMS and SLDSNMPMib2
� SQL Server database

2006-08-21 17:33:24,066 DiscoverManager

[DiscoverWorker-12]

HpUxComputerSystemAgent(10.10.40.11) DEBUG

os.HpUxOs - Got NFS FileSystem String :

anticlimax.eng.collation.net:/opt/home/coll

1

4

3

2

5

6

7
8

1. Date/time stamp 5. Target

2. Service 6. Log level

3. Thread 7. Java class generating message

4. Sensor 8. Message

388 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www-1.ibm.com/support/docview.wss?uid=swg27010399

� StackScan
� VMware ESX
� Weblogic Application Server
� WebSphere Application Server
� Windows OS

9.5.3 Storage errors in sensors

The last activity that happens within a sensor is the storage of discovered
information in the database. That activity can generate a class of errors called
storage exceptions, which appear in the sensor status as “A storage error
occurred” and often appear in the logs with the following information in the error
context: com.collation.discover.observer.StorageException.

There are two causes of storage errors. The first cause is a storage error due to
a MissingKeyException. The second cause is due to resource contention in the
database.

MissingKeyExceptions
MissingKeyExceptions occur because there is a piece of missing data. The
Globally Unique Identifier (GUID) that is being inserted for the object does not
match; we cannot match the data that is being stored with the data that is already
in the database; or a similar problem exists. In other words, it is a data problem.

There are also cases with an error similar to “storing 1 server bound to
unknown SAP”. This error can occur if the server is bound to an IP address that is
different from the IP address that was used for the discovery scope. This
condition can happen in servers with multiple IP addresses or interfaces where
another IP address was used for discovery. The solution is to use the IP address
to which the server is bound for discovery.

Resource contention in the database
A StorageError without the MissingKeyException in the error.log is a database
deadlock. A database deadlock means that the sensors were trying to grab the
same set of database locks, each sensor grabbed several of the database locks,
and then, neither sensor was able to continue because they were each waiting
for locks that the other sensor held. When discovering only one or two hosts with
parallel storage turned on, deadlocks are not completely avoidable. However,
deadlocks are a temporary condition. When multiple hosts are discovered, this
deadlock happens less frequently.

To fix this problem, you need to either set the storage thread count to a lower
value, or you need to increase the storage retry count in the collation.properties
file.

 Chapter 9. Troubleshooting 389

A higher threadcount (or storage threads) increases throughput with the
increased likelihood of contention.

One method to work around this deadlock is to lower the number of storage
threads by changing the com.collation.discover.osbserver.topopumpcount from 4
to 1 when performing a discovery on only one WebSphere cell. This change
eliminates parallel database inserts.

The other alternative is to raise the number of storage attempts. The more
topopumps (or storage threads), the more chance for contention and the greater
need for a higher storage attempt count.

Change the following line in the collation.properties file from 3 attempts to 6:

Number of times TopoPump will try to store a result:

com.collation.discover.observer.topopumpstorageattempts=3

to:

com.collation.discover.observer.topopumpstorageattempts=6

9.5.4 Application programming interfaces (APIs)

The api.sh command often does not provide error messages on failure. There
are two logs that can help you in this scenario.

ApiServer.log
If a specific API query fails, but most queries work, you can examine the
ApiServer.log. For SQL-style search queries, such as Model Query Language
(MQL), you can search for the query itself in the log file, as illustrated in
Example 9-11.

Example 9-11 Finding a MQL query in the ApiServer.log

2007-10-30 14:48:33,154 ApiServer [RMI TCP
Connection(136)-10.199.2.114] DEBUG
server.DataWorker - find, sessionId: 937921212956061062, query: select
* from UserData where objRef=='39FC5CABAA00364E97DBDBCE8DE8F5D3', jdoQ:
null, jdoVar: nul
l, mss: null, permissions: null

390 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

After you have found the query, search downward in the log file for the string
ERROR. The cause of the failure is usually logged as an ERROR message. In
Example 9-12, we learn that “The delete failed” due to a NullPointerException,
which means that the system was unable to find what it was looking for. The
cause, in this case, is likely that the GUID (the long string
39FC5CABAA00364E97DBDBCE8DE8F5D3) either does not exist, has a typographical
error, or was formatted incorrectly.

Example 9-12 The ERROR message in ApiServer.log

2007-10-30 14:48:33,258 ApiServer [RMI TCP
Connection(136)-10.199.2.114] ERROR
server.DataWorker - The delete failed.
java.lang.NullPointerException
 at
com.ibm.cdb.api.server.DataWorker.deleteById(DataWorker.java:1939)
 at
com.ibm.cdb.api.server.ApiServerBean.deleteById(ApiServerBean.java:207)
 at
com.collation.proxy.api.server.ApiServer.deleteById(ApiServer.java:815)

ClientProxy.log
All external calls to TADDM, which includes calls through the api.sh script or
Java-based API calls, come through the ClientProxy service. If there is a problem
with this service, you find information in the dist/log/services/ClientProxy.log file.

9.5.5 Troubleshooting Windows discoveries

Next, we discuss considerations for Windows discoveries.

Windows discovery can be challenging
Windows security is, understandably, an obscure and challenging technical area,
mastered by Windows administrators, different in every environment, changing
with every service pack, and designed to keep malicious hackers from
discovering information about the server. TADDM is a system management tool
designed to discover information about servers in your environment. There is an
inherent conflict, and it is difficult to overcome.

TADDM is tested with full local administrator user access on each server to be
discovered. Every client has a different security policy and removes rights from
the service account that TADDM is allowed to use to discover. Often, the
TADDM administrator and the Windows administrators are not in the same
organization, building, or city, so overcoming this situation becomes an
organizational, as well as a technical, challenge.

 Chapter 9. Troubleshooting 391

Considering this challenge, we now discuss how to troubleshoot problems with
Windows discovery.

testwmi command
First, try to run the wmitest tool on the TADDM Server to get an idea of what
TADDM struggles with when discovering a given server. Perform the following
steps and look at the output to get an idea of the cause of the problem:

1. Log on to the IBM Tivoli Change and Configuration Management Database
(CCMDB)-server using putty and log on with the cdtadmin user. Navigate to
the /opt/IBM/cmdb/dist/support/bin directory and issue the following
command:

#./testwmi.py 10.176.55.17

2. Carefully scan the output to see if it includes a clue to what the actual problem
is with the given target. If no obvious problem is reported, continue with the
tests in the following steps.

Verifying WMI on the target machine
Perform the following steps to verify that WMI is on the target machine:

1. Run the built-in WMI test tool, WMI Tester, on the Windows servers, by
opening a DOS window and running the command wbemtest. The following
GUI is displayed (Figure 9-2 on page 393).

392 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 9-2 WMI Tester

If the WMI Tester GUI is not displayed, there is a basic problem with WMI on
the machine, or the taddm user does not have the necessary rights to run
WMI. This situation requires investigation on the target machine to get WMI
working, or alternatively, try to log on with another user (Administrator) to
check if there is a difference.

2. Click Connect, fill in the correct namespace (root\cimv2), and click Connect
(Figure 9-3 on page 394).

 Chapter 9. Troubleshooting 393

Figure 9-3 Namespace

The GUI will be redisplayed, now with all buttons active (Figure 9-4).

Figure 9-4 WMI Tester

This test verifies that WMI is working locally on the target.

394 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

You can also query these additional classes that are used by TADDM:

� Win32_Process
� Win32_OperatingSystem
� Win32_WMISetting
� Win32_ComputerSystem

Verify that these classes can be queried using Scriptomatic locally on the target
system and remotely from the gateway.

WMI functionality with WMIDiag
WMIDiag is a tool that is provided by Microsoft that can verify that WMI is
configured and accessible. WMIDiag is available at the following Web site:

http://www.microsoft.com/downloads/details.aspx?familyid=d7ba3cd6-18d1-
4d05-b11e-4c64192ae97d&displaylang=en

Follow the instructions to install and run the utility. Verify that WMI is working
correctly.

Verify WMI from the gateway to the target
The next step is to try WMI connectivity between the TADDM gateway and the
target. Use the same procedure that was just outlined to start the wbemtest tool:

1. Log on remotely with the taddm user to the TADDM gateway using Remote
Desktop or Virtual Center. Open a DOS window, and issue the wbemtest
command.

2. Log on locally to the WMI namespace to verify the basic functionality of WMI
on the gateway by clicking Connect and filling in the correct namespace
(root\cimv2). Click Connect as shown in Figure 9-5 on page 396.

Note: Scriptomatic is an alternative tool to use for WMI testing. Scriptomatic is
a compiled HTML document that is used to create scripts, which in turn are
used to retrieve WMI data - either locally or remotely. You can download
Scriptomatic (including the documentation) from this Microsoft Web site:

http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-64
8B-4119-B7EB-783B0F7D1178&displaylang=en

 Chapter 9. Troubleshooting 395

http://www.microsoft.com/downloads/details.aspx?familyid=d7ba3cd6-18d1-4d05-b11e-4c64192ae97d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-648B-4119-B7EB-783B0F7D1178&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-648B-4119-B7EB-783B0F7D1178&displaylang=en

Figure 9-5 Connect

WMI is working locally on the TADDM gateway if the GUI is redisplayed with
all buttons active.

Figure 9-6 WMI Tester

396 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

WMI connectivity between the gateway and the target
Next, verify the WMI connectivity between the TADDM gateway and the target.

Click Connect and fill in the correct namespace (\\servername\root\cimv2),
including the name or IP address of the target machine. Click Connect.

As in the previous example, the GUI is redisplayed with all buttons active, and
the namespace that is shown in the upper left corner includes the name or IP
address of the target machine (Figure 9-7).

Figure 9-7 WMI Tester

This verifies that the correct WMI connectivity exists between the TADDM
gateway and the target.

Using testwmi again
The next step to perform is to verify the WMI functionality from the TADDM
Server through the TADDM gateway to the target. This WMI functionality
includes SSH communications between the TADDM Server and the TADDM
gateway, as well as WMI connectivity between the TADDM gateway and the
target. In addition, both WMI and SSH credentials as defined in TADDM are
used for connectivity.

Navigate to the /opt/IBM/cmdb/dist/support/bin directory. Issue the following
command to check for WMI functionality:

#./testwmi.py <target ip>

Closely verify the output for problems related to passwords, access rights, or
problems related to connectivity (that is, Remote Procedure Call (RPC)
problems).

 Chapter 9. Troubleshooting 397

Testing specific queries
TaddmTool is the script deployed to Windows gateways for discovery. Most of
the data that is gathered during Windows discovery is from queries that are
initiated by TaddmTool. You can run a specific TaddmTool query (perhaps a
query that is failing in the log files) to identify if a specific command is not
working. You can find the TaddmTool.exe in C:\WINDOWS\Temp\taddm.xxxxx on
the Windows Gateway server.

The syntax to run a command is:

TaddTool.exe arguments command @IP parameters required arguments

Example 9-13 shows the QueryServices command.

Example 9-13 TaddmTool command

TaddmTool.exe -DTADDM_ID=12345 -DTADDM_USERNAME=taddm
-DTADDM_PASSWORD=password123 -DTADDM_INTERACTIVE=yes QueryServices
@9.43.73.81 servicename

The TaddmTool.exe arguments are:

� -DTADDM_ID=<id# from /WINDOWS/temp/taddm.xxxxx>
� -DTADDM_USERNAME=<id on the target>
� -DTADDM_PASSWORD=<password on target>
� -DTADDM_INTERACTIVE=yes

If no “@IP” is specified, the command is run on the local server.

You can use any of these commands:

� AdsiDump
� AdsiDumpLocal
� AdsiDumpRemote
� AdsiEnum
� AdsiEnumLocal
� AdsiEnumRemote
� CheckServices
� Db2Find
� Db2FindSchema
� Db2Svce2Inst
� GetActiveDirectoryLdapParameters
� GetActiveDirectoryNamingContexts
� GetCitrixInformation
� GetEnvironment
� GetEtcServices
� GetFileInfo

398 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� GetFreeDiskSpace
� GetHostId
� GetInstalledSoftware
� GetIpInterfaces
� GetLongPath
� GetNonDefaultServices
� GetNonDefaultServicesWithDescriptions
� GetPortMap
� GetProcessEnvironment
� GetRouteInfo
� GetSecurity
� GetShortPath
� GetSMSInformation
� GetSMSParentChilds
� GetSystemInfo
� GetTaddmToolVersion
� GetWmiClassProperties
� GetWmiClassValues
� Help
� InstallProvider
� Kill
� ListDevices
� ListDNSServers
� ListDrives
� ListIpAddresses
� ListKernelModules
� ListProcesses
� ListShares
� Md5Hash
� NetConnect
� Obscure
� ProbePort
� Ps
� QueryRegistry
� QueryServices
� RestartWmi
� RunCommand
� RunCommandUtf8
� SqlDump
� StartAnchor
� StartWmi
� StopWmi
� TestWmi
� Unobscure
� WinError

 Chapter 9. Troubleshooting 399

9.5.6 Troubleshooting SSH

Test tools on the TADDM Server make it possible to test using the access
credentials that are defined in TADDM.

Navigate to the test tool directory and issue the following command:

./testssh.py 10.176.52.22 "uname"

or

./testssh.py 10.176.52.22 "sudo lsof"

You can find various commands that are failing in the sensor log files and test
them through the command line ssh or the testssh command.

Environment
Many problems in TADDM are caused by the configuration of the underlying
system environment. One example of this is the SSH environment. TADDM SSH
connections are made with a Java SSH library, and the behavior in this library is
differs slightly from logging in via SSH and sourcing the server account’s
environment. Therefore, we recommend that you test failing commands using
the following syntax from the TADDM Server:

ssh username@10.176.52.22 uname

Note that the command is on the same line as and is actually an argument to the
ssh command. In this case, the uname command is executed with the same
environment as the TADDM SSH connection.

If this type of test fails, try the following command to examine the environment
that is being used:

ssh username@10.176.52.22 env

Rivest, Shamir, and Adelman (RSA) fingerprint
After reprovisioning a server, the RSA fingerprint stored on the TADDM Server
will be different from the key that was sent from the server. When starting an
SSH session to the remote server from TADDM, you will get a message similar
to Figure 9-8 on page 401.

400 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Figure 9-8 TADDM message

This error message indicates that the entry in the known_hosts file has to be
updated. To update the entry in the known_hosts file:

1. Log in to the TADDM Server using SSH and start an SSH session to the
server in question:

ssh taddm@<host>.

2. Enter the password for the taddm user.

3. Note the error message indicating the file to be updated and the line in the file
to be changed (known_hosts and line 67 in the example in Figure 9-9).

Figure 9-9 Error message

4. Open the file known_hosts in vi and navigate to the line containing the key for
the server in question (search for the IP address or host name of the server).

5. Press dd to delete the line; press Escape and :wq and Enter to save the file
and exit vi.

6. Start an SSH session to the server in question by running:

ssh taddm@<host>

This command is shown in Figure 9-10.

Figure 9-10 RSA key added

Note that the RSA key is added to known_hosts for the server.

 Chapter 9. Troubleshooting 401

402 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Part 5 Planning for a Client
Engagement

In this part, we focus on service engagement planning for Tivoli Application
Dependency Discovery Manager. The target audience of this part is IBM
Business Partners and Solution Developers.

Part 5

© Copyright IBM Corp. 2008. All rights reserved. 403

404 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Appendix A. Planning for a client
engagement

In this appendix, we discuss several areas of IBM Tivoli Application Dependency
Discovery Manager (TADDM) that you need to consider during a client
engagement. The target audience of this appendix is IBM Business Partners and
Solution Developers. The topics that we discuss include:

� “Services engagement preparation” on page 406
� “Solution scope and components” on page 407
� “Services engagement overview” on page 410
� “Estimating the activities and timings of the engagement” on page 416

A

Important: The time estimates in this chapter are not representative of all the
possible implementation scenarios of a IBM Tivoli Application Dependency
Discovery Manager-based solution. Each environment is unique, and the time
estimates that we provide must be regarded as general guidelines, not
absolute numbers.

© Copyright IBM Corp. 2008. All rights reserved. 405

Services engagement preparation

This section describes the resources that are available to help you successfully
deliver a solution. The end goal of a services engagement can be comprised of
all or part of the following items:

� Describe the IBM Tivoli Application Dependency Discovery Manager V7.1
architecture and components.

� Plan and design an IBM Tivoli Application Dependency Discovery Manager
V7.1 solution that is based on the client requirements and environment.

� Install and configure prerequisites for IBM Tivoli Application Dependency
Discovery Manager V7.1.

� Install and configure IBM Tivoli Application Dependency Discovery Manager
V7.1 infrastructure components and integrated products (IBM Tivoli
Enterprise Console®, IBM Tivoli Netcool, IBM configuration management
database (CMDB), and so on).

� Perform performance tuning and problem determination for IBM Tivoli
Application Dependency Discovery Manager V7.1.

We discuss these topics in two sections:

� “Implementation skills” on page 406
� “Available resources” on page 407

Implementation skills

To successfully develop and deploy a IBM Tivoli Application Dependency
Discovery Manager-based solution, you must acquire certain specialized skills.
You need these skills to implement and customize the solution:

� Working knowledge of operating system (OS) administration, networking, and
firewall concepts.

� Basic knowledge of the enterprise discovery monitoring concepts.

� Basic knowledge of protocols, such as Simple Network Management Protocol
(SNMP), Secure Shell (SSH), Java Management Extensions (JMX), and
Windows Management Interface (WMI).

� The exact skills balance that you will need depends on the environment that
you intend to build with this technology and also the server platform on which
you intend to host the management solution.

406 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Available resources

You need the prerequisite skills that are listed in “Implementation skills” on
page 406 to customize or develop the solution. For each of these skills, many
resources are available to help you acquire the necessary skill level. Several of
the educational resources available are:

� Further technical information, including trial code, white papers, and support
links, can be found at:

http://www-306.ibm.com/software/tivoli/products/monitor/

� Classroom training: IBM PartnerWorld® provides current information about
available classes, their dates, locations, and registration. Additionally, check
the PartnerEducation Web site, which serves as a single point-of-contact for
all IBM Business Partner education and training. Further details can be found
at:

http://www-306.ibm.com/software/tivoli/education/

� IBM Technical Education Services (ITES) offers a variety of classes at all
knowledge levels to help you achieve any of the offering’s prerequisite skills.

� IBM Redbooks publications: You can access various practical and
architectural information regarding IBM hardware and software platforms from
IBM Redbooks publications. PDFs are available for download from the Web
site:

http://ibm.com/redbooks

Solution scope and components

Define the scope of the solution. The solution can be one of the two types of
basic offerings that are described in “Basic solution definition” on page 409, or
you can add additional components, as shown in “Advanced solution definition”
on page 410.

IBM Tivoli Application Dependency Discovery Manager
Tivoli Application Dependency Discovery Manager provides the necessary
visibility required to achieve operational management of infrastructure resources.

Agent-free automatic discovery is employed together with a data center
reference model to produce complete cross-tier dependency maps and
topological views.

 Appendix A. Planning for a client engagement 407

http://ibm.com/redbooks
http://ibm.com/redbooks
http://www-306.ibm.com/software/tivoli/products/monitor/
http://www-306.ibm.com/software/tivoli/education/
http://www-306.ibm.com/software/tivoli/products/monitor/

The following list describes the product operations:

� The agent-free Discovery Engine instructs and coordinates the Discovery
Sensors to determine and collect the identity, attributes, and settings of each
application, system, and network component.

� The discovered data is fed to the Data Center Reference Model creating the
specific runtime, cross-tier application topologies.

� The topologies, along with their configuration data, interdependencies, and
change history, are stored in the TADDM Database.

� The Product Console provides analytics and topological views of the TADDM
Database.

Figure 9-11 Portfolio of products

408 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

As shown in Figure 9-11 on page 408, IBM offers a complete portfolio of
operational management products that, when used with Tivoli Application
Dependency Discovery Manager, form the basis of solutions to enhance:

� Business systems management:

– Tivoli Business Service Manager auto-populates services on dashboards.

– Tivoli Business Service Manager allows users to view service
configuration history.

� Provisioning of software and servers:

– Provides a list of available servers to Tivoli Provisioning Manager.

– Tivoli Provisioning Manager users can view its configuration history.

� Monitoring and event management:

– Change events are sent to Tivoli Monitoring.

– Tivoli Monitoring is notified which servers are not being monitored.

� Network management:

– Network managers can view its configuration history.

– Users can see device status in Tivoli Network Manager.

Basic solution definition

IBM Tivoli Application Dependency Discovery Manager delivers automated
discovery and configuration tracking capabilities to build application maps that
provide real-time visibility into application complexity. These detailed maps
include complete data on runtime dependencies, in-depth configuration values,
and accurate change histories.

Tivoli Application Dependency Discovery Manager provides the insight that you
need to understand complex configurations and how those configurations have
changed. Tivoli Application Dependency Discovery Manager is able to
proactively notify your event management products when a change has
occurred, so that you have the ability to better understand which changes might
be the root causes of problems that your business critical systems are
experiencing.

 Appendix A. Planning for a client engagement 409

Advanced solution definition

TADDM helps you understand configurations, map applications and changes,
and address compliance measures. Key highlights are:

� Visualize interdependencies and relationships between applications,
computer systems, and network devices through application mapping and
agent-less, credential-free discovery capabilities.

� Take advantage of integration with other Tivoli operational management
products, such as IBM Tivoli Business Systems Manager, IBM Tivoli
Provisioning Manager, IBM Tivoli Monitoring Services, IBM Tivoli Composite
Application Manager for service-oriented architecture (SOA), and many more.

� Learn how configuration items (CI) are configured and changing over time by
capturing the configuration of each CI, tracking changes to it, and providing
analytics to report on the history of the configuration changes.

� Determine if configurations comply with your policies by comparing
discovered configurations to a “reference master” to reveal policy violations.

� Use industry-standard secure protocols in the discovery process to ensure
that sensitive data is accessible only by authorized access.

� Use configurable discovery profiles and a phased-in discovery process to
control where users discover, what they discover, and how deep they go, from
lightweight, credential-free discovery up to agent-less deep-dive discovery.

Rapidly deploy and share application maps across operational management
products, teams, and processes through open application programming
interfaces (APIs), an extensible model, a pluggable sensor framework, and a
software development tool.

Services engagement overview

Implementers of a solution routinely rely on their skills and previous experiences
as a guide, but there are always issues that might require educated guesswork.
The goal of this section is to help you minimize the guesswork that is involved in
planning and implementing a solution by providing a framework and time
estimates for the major tasks.

A typical services engagement consists of these actions:

� Build an executive assessment (refer to “Executive Assessment” on
page 411).

� Set up a demonstration system or proof of technology (refer to
“Demonstration system setup” on page 412).

410 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� Analyze the solution tasks (refer to “Analyze solution tasks” on page 413).

� Create a contract, commonly known as a Statement of Work (refer to
“Creating a contract” on page 414).

We describe the representative tasks and the time involved for custom solution
execution in the following section. The actual set of tasks to accomplish and the
time involved can vary, because each client has a unique set of needs. However,
this list can help you understand the implementation details, size the solution
more accurately for the client, and ensure a profitable engagement for yourself.

It is important to work with your clients to understand their expectations. After you
gather this data, document the tasks, deliverables, and associated costs in a
Statement of Work. The Statement of Work acts as your contractual agreement
with the client for the duration of the project; therefore, a detailed and
well-defined Statement of Work is advantageous both to you and to your client.

A good overall understanding of the solution scope is a crucial prerequisite to
successfully developing and implementing it. As a Solution Provider, you must
understand what is involved in developing such a solution before you can discuss
it with your client and size it for a cost estimate.

Executive Assessment

The Executive Assessment is a service that can be offered to prospective clients
as a billable service. It offers a process that is designed to help you evaluate the
business needs of a company that is planning to deploy a solution for e-business.

This toolset helps you ask the right people the right questions, so that you get the
information that you need to propose the appropriate solution. The complete
Executive Assessment process takes approximately 10 to 16 hours. The task
breakdown is shown in Table A-1 on page 411.

Table A-1 Solution tasks

Task Estimated time
(hours)

An initial fact-finding meeting, asking questions, and
gathering data

3

A review and analysis of competing solutions 2

Preparation of a set of strategic recommendations 1

Creation of a demonstration prototype 3 - 9

A presentation of findings and close for a contract 1

 Appendix A. Planning for a client engagement 411

This is a business-case assessment, not a technical assessment, so the
audience must be business owners, line-of-business executives, marketing and
sales managers, and finally, the IT manager. The business owner or
line-of-business executive is likely to be the decision maker.

For their initial investment, your clients get these deliverables:

� A business assessment prepared by a professional (you)

� A competitive analysis

� A prototype solution for their review

� A strategic and tactical proposal for justifying and implementing their solution
for e-business

Demonstration system setup

A demonstration system is typically set up in advance to show your clients the
attributes of the solution. The demonstration system can typically be set up with
a limited number of systems that are separate from the system that will be used
by the production system. The demonstration can be virtualized with
technologies, such as Zen, VMware, or Microsoft Virtual Server.

A simple demonstration can be performed on one server that has the IBM Tivoli
Application Dependency Discovery Manager Server components installed and a
selection of IBM Tivoli Application Dependency Discovery Manager Discovery
Sensors used.

If needing to Discover specific resources, such as applications or databases, is a
key part of the engagement, it is important to get samples of these resources and
show how IBM Tivoli Application Dependency Discovery Manager can be used
to discover them.

The demonstration system allows your clients to evaluate whether the solution
suits their particular needs.

Total 10-16

Task Estimated time
(hours)

Important: At an early stage in your client engagement, you must establish
the key success criteria and areas that will enable “quick wins” for your client’s
requirements. Your demonstration can then be built around this success
criteria.

412 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

The tasks of demonstrating the solution and its time estimates are shown in
Table A-2.

Table A-2 Solution demonstration tasks

Analyze solution tasks

After the client agrees to use the solution in their environment, determine the
effort that is involved in implementing the solution. Then, collect these estimates
of the effort and include them in a contract or Statement of Work.

We discuss these tasks in detail in “Estimating the activities and timings of the
engagement” on page 416. These tasks are our suggested tasks and order; you
might complete the tasks in a different order, or you might omit or add tasks
depending on the environment in which you implement the solution. The amount
of skill and experience that you and your team have on the solution and also the
access, which is facilitated by your client, to the necessary resources influence
the overall solution timing. The assumption of the estimated timings that we
present is typically based on the knowledge of:

� The operating systems

� The relational database management system (RDBMS) and database
configuration and management

� IBM Tivoli Application Dependency Discovery Manager

Task Estimated time
(hours)

Set up hardware. 1 - 2

Install and configure TADDM Server components. 2 - 3

Configure Discovery. 2 - 3

Demonstrate Discovery to client. 4

Total 9 - 12

 Appendix A. Planning for a client engagement 413

Depending on your skills and experience, the estimates presented might be too
high or too low. Table A-3 illustrates one method of approximating more realistic
time estimates for your efforts that is based on whether you or your team are new
to each skill area or can be considered experts. A novice represents someone
who completed training in the skill area, but who has no hands-on experience.
An expert represents someone who completed training in the skill area and has
also implemented IBM Tivoli Application Dependency Discovery Manager
projects. You can use the percentages in Table A-3 to adjust your time estimates.

Table A-3 Skill adjustment

For the detailed task breakdown, refer to “Estimating the activities and timings of
the engagement” on page 416.

Creating a contract

A contract or Statement of Work is a binding contractual agreement between you
and your client that defines the service engagement that you must perform and
the result that the client can expect from the engagement. The contract must
leave nothing in doubt.

A Statement of Work contains these components:

� An executive summary of the solution, which is typically a short (less than a
page) summary of the solution and its benefit. You must specify any major
restriction of the implementation, such as:

– The solution is only implemented for the finance application servers.

– The solution will be implemented in phases.

Skill Novice:
Increase by

Expert:
Reduce by

Experience of the operating system 25% 10%

Experience of RDBMS and database
management

10% 10%

In-depth understanding of IBM Tivoli
Application Dependency Discovery Manager

40% 20%

In-depth understanding of resource discovery
techniques

30% 30%

Experience with Data Federation using IBM
WebSphere Federation Server

20% 10%

414 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

� A solution description, which contains the major components and solution
building blocks that will be implemented. It must cover the conceptual
architecture of the solution and the solution scope in general. This description
is for technical personnel in order that they understand the implementation
scope.

� Assumptions, which list all of the assumptions that are used to prepare the
contract and to provide task estimation. Any deviation from the assumptions
that are used will definitely impact the scope of the engagement and must be
managed using the change management procedure. Typical changes include
cost changes or scope changes.

� Business partner responsibilities, which list all of the responsibilities or major
tasks to be performed by you or your team to implement the solution.

� Client responsibilities, which lists all of the responsibilities or items that the
client must provide for you or your team in order to perform the engagement.
If you cannot obtain any item in the client responsibilities, a change
management procedure might be invoked.

� Staffing estimates, which list the estimated personnel that must implement
the solution.

� Project schedule and milestones, which show the major steps, schedule, and
achievement calendar that can be used to check the project progress.

� Testing methodology, which lists the test cases to ensure that the project
implementation is successful.

� Deliverables, which provide tangible items that the client will get at the end of
the service engagement, including:

– Machine installation

– Documentation

– Training

� Completion criteria that list the items that are provided to the client, which
indicates that the engagement is successfully completed. For most service
engagements, the completion criteria are probably the most delicate items to
define. It must have clear targets to which both parties agree, and it must not
be too general.

A sample Statement of Work is provided in Appendix B, “Sample Statement of
Work for Tivoli Application Dependency Discovery Manager” on page 421.

 Appendix A. Planning for a client engagement 415

Estimating the activities and timings of the engagement

The fundamentals of delivering a profitable and successful services engagement
include correctly identify the tasks that you must perform and adequately
allocating the necessary time to perform them. In this section, we guide you
through the tasks that you might need to perform to implement a Tivoli
Application Dependency Discovery solution, and we estimate the timing. The
estimates rely on basic assumptions, which invalidate the estimates if the items
in the following list become a significant requirement for the client.

Perform environmental analysis and plan tasks

In this section, we discuss the tasks for environmental analysis engagement.
Table A-4 shows the timing estimate for the major components of the tasks for
the environmental analysis service.

Table A-4 Estimated time in hours for identified tasks

We define a “simple application” to be a standard commercial application, such
as an RDBMS, Web server, or a Directory Server. We define a “complex
application” as a customized application that is developed by the client or an
application that has many related subcomponents.

Task Simple application
(hours)

Complex application
(hours)

Identify business
objectives and project
sponsor.

2 2

Gather details of Discovery
and Application
Dependency requirements
(estimates are per
application component to
be discovered).

2 8

Complete design. 5 8

Communicate plan to
project sponsor.

2 2

Total hours 11 20

416 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

To help gather these technical requirements, consider these questions:

� How many servers and different server platforms are there in the
environment?

� What application components exist in the data center environment?

� Where are the application components and IT resources geographically
located?

� Are there any firewalls and DMZs in the environment?

Before you can derive the solution for the client scenario, you need to calculate
the approximate number of Configuration Items (CIs) and the approximate
number of DomainManagers that are required.

Because enterprise data center environments vary dramatically, IBM defines the
concept of a server equivalent (SE) to normalize and present a standard set of
performance and scale metrics. A representative unit of IT infrastructure, a
server equivalent, is defined as a computer system with standard configurations
for the operating system, network interfaces, and storage interfaces, and it also
accounts for installed software, such as a database (DB2), a Web server
(Apache or IPlanet), or an application server (WebSphere or WebLogic). An SE
also accounts for network, storage, and other subsystems that provide services
to the optimal functioning of the server. Each SE consists of 200 CIs.

As defined by the Information Technology Infrastructure Library (ITIL), a
Configuration Item (CI) is any component that is under the control of
Configuration Management and, therefore, subject to formal Change Control.
Each CI in the Configuration Management Database (CMDB) has a persistent
object and change history associated with it. Examples of a CI are a computer
system, operating system, network interface, and database buffer pool size.

It is difficult to provide a standard number for the number of CIs in an SE. The
actual number of CIs in an SE varies depending on the complexity of the
infrastructure. For example, a complex database server with a large number of
instances, databases, and tablespaces has a larger number of CIs per SE, and
the number of CIs affects the overall performance.

For example, a server starts with approximately 500 CIs before discovery. A Red
Hat Linux 4.0 operating system that is installed with no applications creates an
extra 40 CIs. Installing DB2 Version 8.2 Fix Pack 10 creates approximately 300
CIs. Installing WebSphere Application Server 6.0 creates another 350 CIs.

The distributed architecture of TADDM is designed to scale to millions of CIs. In
particular, with a scalable relational data store, such as DB2, TADDM can
accommodate a large number of server equivalents.

 Appendix A. Planning for a client engagement 417

The key considerations are:

� Discovery Techniques: Native Discovery, International Development Markup
Language (IDML) Book Load, or application programming interface (API)

� Data loading time

� Number of servers

� Complexity of the servers

Plan the solution

Planning the deployment of a TADDM solution includes the subtasks that are
described in the following sections.

Gather requirements
At the beginning of your engagement, you need to meet with your clients to
understand their proposed objectives and to gather their requirements. First,
determine the functional requirements. Functional requirements define the
business functions that the monitoring system is going to provide. You determine
your requirements by developing a good understanding of the business needs
and a good understanding of what you hope to achieve. For example, look at
issues, such as business goals, purpose, and usage questions, who the users
are, and how they expect to interact. It is important to gather these requirements
early and to discover any challenges that might lie ahead while the challenges
can still be dealt with easily. After you determine the functional requirements, you
can clarify the technical or system requirements.

The technical requirement involves spending time at the client site to determine
and understand the available data sources.

Design the solution
Topics that you must address range from scalability, functionality, and the
performance of this solution.

Design involves understanding the client’s environment, including hardware,
software, data volumes, special requirements, and operational procedures. It is
necessary to identify and plan for any additional tuning of software that might be
required because of the client’s environment or special needs. In addition, you
need to perform an analysis of the modifications that are made to the scenarios
and reports. After you design the proposed solution and review it with your client,
you are ready to begin the development of the offering.

418 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Perform a gap analysis
This task might involve performing a gap analysis to give the client an estimate of
the development effort that is required to set up the solution. At its core, the
analysis seeks to determine what customizable components need to be
extended, modified, or created. The number and complexity of customizable
components drive the size of the project and the required resources.

After you design the proposed solution and review it with your client, you are
ready to proceed.

Implement the solution

You implement the solution by using the tasks that are described in Table A-5 on
page 420. Note that here we estimate the times to perform the activity a single
time. Remember that the numbers of each item can vary, which reflects on the
total time for the project. The number of applications to discover and also the
amount of configuration that is required for the TADDM Server and database
environment also affect the total time for the project.

 Appendix A. Planning for a client engagement 419

Table A-5 Timeline estimates for implementation activities

Close the engagement

When the technical work is complete, and the education is delivered, formally
close the engagement with the project sponsor or their deputy. We suggest that
you cover the following agenda items during the meeting with the project
sponsor:

� Review of original business objectives.

� Summarize how the solution meets the defined objectives.

� Summarize the services delivered.

� Summarize new capabilities.

� Summarize other services or products identified during the engagement.

� Thank the sponsor and close.

Task Estimated time
(hours)

Identify servers and configure any firewalls to allow appropriate
IBM Tivoli Application Dependency Discovery Manager traffic.

2

Install and configure the OS and install one TADDM Server. 8

Configure TADDM. 3-6

Install and configure Enterprise Configuration Management
Database (eCMDB).

3-6

Configure anchors. 2-4

Configure Gateways. 2-4

Configure users and TADDM Security. 2-4

Integrate IBM Tivoli Application Dependency Discovery
Manager with Tivoli Business Systems Manager (TBSM), IBM
Tivoli Monitoring (ITM), and Tivoli Provisioning Manager (TPM).

2-6

Configure Discovery profiles and run sample discovery. 2-4

Test solution. 14

Deliver education: IBM Tivoli Application Dependency
Discovery Manager for Administrators (three days)

28

Document solution. 14

Total 30-64

420 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Appendix B. Sample Statement of Work
for Tivoli Application
Dependency Discovery
Manager

In this appendix, we provide a skeleton document that you can use for developing
your own customized Statement of Work.

B

© Copyright IBM Corp. 2008. All rights reserved. 421

Building an auto-discovery and device dependency
solution

The content of the Statement of Work includes activities to:

� Install the IBM Tivoli Application Dependency Discovery Manager (TADDM)
component infrastructure

This task typically includes installing the TADDM Server, Enterprise
Configuration Management Database (eCMDB) Server, and Configuration
Management Database (CMDB).

� Install appropriate IBM Tivoli Application Dependency Discovery Manager fix
pack platforms.

� Configure Discovery Anchors and Windows Gateways.

� Configure and run TADDM discoveries.

� Configure integration points with Operational Management Products.

Building the IBM Tivoli Application Dependency Discovery solution Statement of
Work consists of the following sections:

� “Executive summary” on page 422

� “Solution description” on page 423

� “Assumptions” on page 424

� “Business partner responsibilities” on page 424

� “Client responsibilities” on page 425

� “Staffing estimates” on page 425

� “Testing” on page 425

� “Deliverables” on page 426

� “Completion criteria” on page 426

Executive summary
This service provides an auto-discovery solution that delivers automated
application dependency mapping and configuration auditing. TADDM provides an
unparalleled level of visibility into how the infrastructure actually delivers the
applications upon which your business environment is based.

By complimenting application map data with other enterprise application data,
such as governance, finance, and so forth, TADDM delivers integrated,
meaningful information that allows you to transform your IT service management
(ITSM) strategy.

422 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

This service builds the infrastructure that is required to support your IT
operations personnel to ensure and improve application availability in application
environments. TADDM provides the operational staff with a top-down view of
applications so that the staff can quickly understand the structure, status,
configuration, and change history of their business-critical applications. This
top-down view enables immediate isolation of issues in times of performance or
availability problems and more effective planning for nondisruptive application
change.

After this work is completed, you have the infrastructure necessary to
successfully view top-down, cross-tier views of how the IT infrastructure actually
delivers applications. Hence, TADDM allows you to:

� Understand the structure of interdependent and complex applications.

� Rapidly isolate configuration-related application problems, which reduces
troubleshooting time from hours and days to minutes.

� Better understand the impact of component-level events in order to sort
issues based on application and service impact.

� More effectively plan change so that application upgrades and deployments
can occur without disruptions.

� Create a shared topological definition of applications for use by other
management applications, such as service level managers and provisioning
tools.

Solution description
This solution builds and deploys an auto-discover solution that allows you to
visualize the computing resources in your IT Infrastructure in order to plan for
and react to any events that might affect the delivery of critical business services.

At the core of IT Service Management is full visibility into the IT services and the
underlying infrastructure that supports these services. After all, if you have to
manage the services, you need a good understanding of exactly what data
makes up these services.

Although this data exists in several databases (mainly asset and inventory
systems and siloed operational management product repositories), this data
might not be accurate or comprehensive.

 Appendix B. Sample Statement of Work for Tivoli Application Dependency Discovery Manager 423

This solution builds a comprehensive repository, which:

� Can accurately and comprehensively discover all of the infrastructure that
supports the application

� Has built-in automation

� Automatically discovers all of the cross-tier infrastructure and creates a
top-down cross-tier map of the components that deliver the application.

We will install and configure the discovery components to gather data from one
or more systems in your heterogeneous operating environment.

Assumptions
These are the assumptions that are made in this Statement of Work:

� We will have local administrator access on the servers on which the TADDM
components will be installed.

� We will have administrative access to the servers on which the components to
be discovered are installed.

� We will have access to Network Administrators who will be able to configure
firewall ports.

� We will have details of which users need access to the TADDM environment,
which must be supplied by the client.

Business partner responsibilities
This service will be provided according to the high standards of <name of
Business Partner>, an IBM Certified Business Partner.

We will provide:

� Skilled staff to undertake the defined activities.

� Documentation of the completed solution.

� Project management of these activities.

Note: Insert any additional responsibilities here that you will be assuming as
part of this project.

424 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Client responsibilities
This section describes the responsibilities that the client has to the Business
Partner, for example:

� Designating a representative who will be the focal point for all communication
with the Business Partner relative to this project and who will have the
authority to act on the client’s behalf in matters regarding this project

� Designating operations personnel to work with the Business Partner as
appropriate

� Providing all product data in the requested format

� Providing all data and information required for the implementation

� Providing a suitable workspace with Internet and telephone access for the
services specialists while they are working on client premises

� Providing user IDs, passwords, and IP addresses as required, enabling the
Business Partner to perform the service

Staffing estimates
The project will be performed with one TADDM specialist who will be on site as
required by the project schedule. We will also provide project management
services, and we will be on-site at the end of the project for its formal closure.
The project is estimated to be performed within <x> working days. This is <x>
person days of effort in total.

We expect that we will need a single member of your staff working with us
throughout this time, who will also perform any mediation role that is required
between any other required technical resources within your computer operation
and us. This requirement is for <x> person days in total.

Testing
The testing of the solution will be done through the use of the infrastructure in
order to ensure that the resources are successfully being discovered.

Note: Add any client responsibilities that you need to assign in order to
complete a successful delivery of your service.

Note: You might want to revise these estimates if you want to provide extra
services, such as education.

 Appendix B. Sample Statement of Work for Tivoli Application Dependency Discovery Manager 425

Testing will be completed successfully when:

� The TADDM Server installation is completed and the components are
running.

� The appropriate discovery scopes have been defined, and resources are
initially discovered.

� The appropriate type of discovery sensors, such as Java Management
Extensions (JMX), Windows Management Interface (WMI), and Simple
Network Management Protocol (SNMP), are used to obtain application,
system, and network components.

� Changing the properties of an infrastructure have been identified by TADDM,
and if there is an available Tivoli Enterprise Console (TEC) or OMNIbus
Server, the appropriate events have been sent.

Deliverables
At the end of this engagement, you have:

� One TADDM environment with all of the required server-side software
installed

� An agreed upon subset of applications and infrastructure components
discovered in TADDM

� Documentation for the TADDM Server configuration and the discovered
environment

Completion criteria
The completion criteria for this project is:

� The successful completion of all the tests

� The delivery of the solution documentation

426 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

acronyms
API application programming
interface

CCMDB Change and Configuration
Management Database

CCMS Computer Center
Management System

CDM common data model

CI configuration item

CIM Common Information Model

DAS DB2 Administration Server

DB2 database

DLA Discovery Library Adapter

DLFS Discovery Library File Store

DNS Domain Name Service

eCMDB Enterprise Configuration
Management Database

ECMDB Enterprise Domain Manager

EJB Enterprise JavaBeans

GSkit Global Security Kit

HIPAA Health Insurance Portability
and Accountability Act

IBM International Business
Machines Corporation

IdML Identity Markup Language

IDML Identification Markup
Language

IETF Internet Engineering Task
Force

ISA IBM Support Assistant

ISM IBM Service Management

ISST IBM Software Services for
Tivoli

IT information technology

Abbreviations and

© Copyright IBM Corp. 2008. All rights reserved.
ITES IBM Technical Education
Services

ITIL Information Technology
Infrastructure Library

ITSM IT service management

ITSO International Technical
Support Organization

JDBC Java Database Connectivity

JMX Java Management Extensions

JSP JavaServer Pages

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LOB line of business

MAC Media Access Control

MSS Management Software
System

NFS Network File System

NIC network interface card

ODBC Open Database Connectivity

OMPs Operational Management
Products

OPAL Open Process Automation
Library

PKI public key infrastructure

SDK software development kit

SLD System Landscape Directory

SNMP Simple Network Management
Protocol

SOX Sarbanes-Oxley Act

SOW Statement of Work

SSH Secure Shell

 427

TADDM Tivoli Application
Dependency Discovery
Manager

TBSM Tivoli Business Systems
Manager

TDS Tivoli Directory Server

TEC Tivoli Enterprise Console

TIO IBM Tivoli Intelligent
Orchestrator

UI user interface

UML Unified Modeling Language

UUID Universally Unique Identifier

WMI Windows Management
Interface

428 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks publications

For information about ordering these publications, refer to “How to get IBM
Redbooks publications” on page 430. Note that the documents referenced here
might be available in softcopy only:

� IBM Tivoli Application Dependency Discovery Manager Capabilities and Best
Practices, SG24-7519

Online resources

These Web sites are also relevant as further information sources:

� Cygwin Web site:

http://www.cygwin.com/

� Cygwin User Guide:

http://cygwin.com/cygwin-ug-net/cygwin-ug-net.html

� TADDM Wiki site:

http://www.ibm.com/developerworks/wikis/pages/recentlyupdated.action
?key=tivoliaddm

� TADDM documentation:

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/index.jsp?to
pic=/com.ibm.taddm.doc_7.1/plugin_files/cmdb_relnotes.html

� TADDM Planning and Installation Guide:

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ib
m.taddm.doc_7.1/cmdb_install.pdf

� TADDM User Guide:

http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ib
m.taddm.doc_7.1/cmdb_user.pdf

© Copyright IBM Corp. 2008. All rights reserved. 429

http://www.cygwin.com/
http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/index.jsp?topic=/com.ibm.taddm.doc_7.1/plugin_files/cmdb_relnotes.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/index.jsp?topic=/com.ibm.taddm.doc_7.1/plugin_files/cmdb_relnotes.html
http://www.cygwin.com/
http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/index.jsp?topic=/com.ibm.taddm.doc_7.1/plugin_files/cmdb_relnotes.htm
http://cygwin.com/cygwin-ug-net/cygwin-ug-net.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ibm.taddm.doc_7.1/cmdb_install.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ibm.taddm.doc_7.1/cmdb_user.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v10r1/topic/com.ibm.taddm.doc_7.1/cmdb_user.pdf
http://www.ibm.com/developerworks/wikis/pages/recentlyupdated.action?key=tivoliaddm
http://www.ibm.com/developerworks/wikis/pages/recentlyupdated.action?key=tivoliaddm

� TADDM support site:

http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliAp
plicationDependencyDiscoveryManager.html

� Distributed Management Task Force Web site:

http://www.dmtf.org

� IBM Support Assistant (ISA) Web site:

http://www.ibm.com/software/support/isa/

� IBM Systems Journal article about IBM Service Management:

http://www.research.ibm.com/journal/sj46-3.html

� Microsoft WMIDiag tool:

http://www.microsoft.com/downloads/details.aspx?familyid=d7ba3cd6-18
d1-4d05-b11e-4c64192ae97d&displaylang=en

� Microsoft Scriptomatic tool:

http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-64
8B-4119-B7EB-783B0F7D1178&displaylang=en

� Best Practices for using TADDM Sensors white paper:

http://www-1.ibm.com/support/docview.wss?uid=swg27010399

� TADDM Best Practices for Deployment Planning document:

http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Prac
tices+for+Deployment+Planning#BestPracticesforDeploymentPlanning-

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers,
Technotes, draft publications and additional materials, as well as order hardcopy
IBM Redbooks publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

430 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliApplicationDependencyDiscoveryManager.html
http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliApplicationDependencyDiscoveryManager.html
http://www.ibm.com/software/support/isa/
http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-648B-4119-B7EB-783B0F7D1178&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-648B-4119-B7EB-783B0F7D1178&displaylang=en
http://www-1.ibm.com/support/docview.wss?uid=swg27010399
http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliApplicationDependencyDiscoveryManager.html
http://www-306.ibm.com/software/sysmgmt/products/support/IBMTivoliApplicationDependencyDiscoveryManager.html
http://www.dmtf.org
http://www.ibm.com/software/support/isa/
http://www.research.ibm.com/journal/sj46-3.html
http://www.microsoft.com/downloads/details.aspx?familyid=d7ba3cd6-18d1-4d05-b11e-4c64192ae97d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-648B-4119-B7EB-783B0F7D1178&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=09DFC342-648B-4119-B7EB-783B0F7D1178&displaylang=en
http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Practices+for+Deployment+Planning#BestPracticesforDeploymentPlanning-
http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Practices+for+Deployment+Planning#BestPracticesforDeploymentPlanning-
http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Practices+for+Deployment+Planning#BestPracticesforDeploymentPlanning-
http://www.ibm.com/developerworks/wikis/display/tivoliaddm/Best+Practices+for+Deployment+Planning#BestPracticesforDeploymentPlanning-

ibm.com/services

 Related publications 431

http://www.ibm.com/services/
http://www.ibm.com/services/

432 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Index

A
Access

Operating system information 373
Access list 22, 179, 371–373, 376, 380–381
Active ports 376
Add Domain 164
add or remove listeners 273
AIX system 82

Net cost 82
aligned with business needs 5
ALTER BUFFERPOOL 360
Anchor host 75, 175–176, 182, 191, 371, 373, 380
Anchor server 73, 75, 175, 177, 181–182

Anchor port 177
Apache 81, 388
APAR descriptions 367
applying fixes 364
architecture overview 38

B
BIRT (Business Intelligence Reporting Tool) 293

All-in-One Package 297
deploying 294
designing reports 297
introducing 294

BIRT Report Viewer 294
bufferpool 357–358
bufferpool tuning 361
bulk load program 246
Business application 62
business owner 412
business requirements 419

C
Case study 80
CCMS (Computer Center Management System) 24
cdm.log 368
Change History Report 28
Change Manager 84
Checkpoint 388
CI calculation 83, 86
Classroom Training 407

© Copyright IBM Corp. 2008. All rights reserved.
ClientProxy.log 391
closing the engagement 421
Collation.properties 348–349, 353, 369
Collation.stderr 374
COLLATION_HOME 157
Collation® Service Account 387
common data model (CDM) 11

attributes 11
classes 11
data types 11
models 11
relationships 11

Common Information Model (CIM) 40
Community name 380
Community string 76
Computer system 175–176, 350, 373–375
ComputerSystem class 13
ComputerSystem sub-model 41
concepts 263
config tool 189
Configuration discovery 175, 182–183, 194

Secure environments 182
Configuration item (CI) 12, 62, 81–87
Configuration management 36, 82

Database 36, 65
Configuration Management Database (CMDB) 23
control status 140
control.log 368
create DB2 database users 106
create roles 57
Creating a deployment plan 64
creating data sets 321
Credential-less discovery 75, 209
custom server extensions 238
custom servers 233
CustomServerSensor 206
Cygwin SSH 183

D
data model 11

logical components 11
physical components 11

Database server 75–76, 81–82, 86–87

 433

Database sizing 63
deep mode 63

database sizing considerations 63
database statistics 357
Datacenter 70, 80, 85–86
datastore 346
Db2 connection 372
DB2 settings 356

APP_CTL_HEAP_SZ 357
bufferpool settings 358
DBHEAP 356
DFT_DEGREE 356
LOCKLIST 357
LOGBUFSZ 356
LOGFILSIZ 357
LOGPRIMARY 357
NEWLOGPATH 357
NUM_IOCLEANERS 357
NUM_IOSERVERS 357
SORTHEAP 357

decision maker 412
deep mode 63
defined objectives 421
dependency discovery 207
dependency types 207

Service 208
deploying anchors 174
deployment checklist 74
deployment plan 64
Deployment planning 80, 88
deployment planning 80
discover observer service 202
discoveries across the firewall 175
DiscoverManager log 387
DiscoverManager.log 349
discovery 22
Discovery Library Adapter (DLA) 263

book methods 276
book properties 276
concepts 263
configuration parameters 272
managing property change listeners 273
states 274
understanding APIs 270
using APIs 271
when to use 269

Discovery Library books 263
Discovery Library File Store (DLFS) 263
Discovery Library XML schema specification 263

Discovery process 175
discovery process 23
discovery profiles 208
discovery scope 22, 211
discovery sensor sequence 204
Discovery_Rate 85
DiscoveryLibraryAdapter class 273
DMTF (Distributed Management Task Force) 40
Domain manager 76, 87
dwcount setting 349, 351

E
eCMDB 54
ECMDB server 63, 76, 85, 88
efix packs 365
EJBs (Enterprise JavaBeans) 41
enable SSH communication 182
engagement activities 417
engagement timings 417
Enterprise JavaBeans (EJB) 63
error.log 368
Establish a secure (SSL) session 25
events-core.log 368

F
File Based User Registry 156
Firewall 71, 80, 85, 174–175, 182–183
firewall zone 53, 182
functional requirements 419

G
gap analysis 420
Gartner Group 36
grep command 387

H
Hanging session 370
Hardware requirements 72
hashmap 243

I
IBM and ITIL 6
IBM Certified Business Partner 426
IBM Common Data Model (CDM) 40

configurations 41
signature 40

IBM Common Data Model (CDM) dependencies 41

434 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

containment dependencies 41
service dependencies 41
transactional dependencies 41

IBM Redbooks publications 407
IBM Service Management (ISM) 11

architecture 10
benefits 7
introduction 6
overview 8
TADDM 11

IBM Support Assistant (ISA) 383
IBM Technical Education Services (ITES) 407
IBM Tivoli Change and Configuration Management
Database Configuration Discovery and Tracking
v1.1 378
Identity Markup Language (IdML) 263
IdML book

Loader 84
idmlcert.jar 290
IIS (Internet Information Services) 388
implement the solution 420
improve staff awareness 5
Info util.port scanner 371, 373, 376, 378, 381–382
Information Technology Infrastructure Library (ITIL)
4
installation troubleshooting 193
installIF.sh 160
installing

Cygwin SSH 183
DB2 Enterprise Server 92
installation troubleshooting 193
Interim Fix 0003 126
logs 195
TADDM 89
TADDM domain server on Linux 126
TADDM domain server on Windows 108

integration overview 266
Interim fixes 365
interim fixpacks 365
Inventory Report 28
IPlanet 81
IT Service Management initiatives 17
IT service management strategy 16
ITIL critical success factors 4
ITIL Version 3 4

J
Java 362

Java Max memory 362
Java SSH library 400
Java Virtual Machine (JVM) 361
Java Virtual Machines (JVM) 361
javacore 362
JavaSpace 202
JDBC (Java Database Connectivity) 41
JDBC connection pools 41
JDBC connectivity 372
JDBC resources 207
JMS (Java Message Service) 41
JMS topic queue 41
JMX™(Java Management Extensions) 22
JSPs (JavaServer Pages) 41
JVM argument 361
Jython scripts 243

K
key design decisions 37

L
l2.log 368
lab environment 90
LDAP (Lightweight Directory Access Protocol) 22
less command 387
Level 1 discovery 203
Level 2 and 3 discovery 204
line-of-business executive 412
Listening ports 377
load scopes 212
loadidml.sh 246
Log 382
Log and Trace Analyzer 382
Log Trace Analyzer 382

analyzing TADDM log files 384
importing TADDM log files 383

logical connections 41
LOGPRIMARY 357

M
Management Software System (MSS) 266
managing discoveries 230
Microsoft Virtual Server 412
Microsoft Windows Server 2003 70
middleware 18
Model Query Language (MQL) 390
multiple domains 57

 Index 435

N
Namespace 393
naming rules 13

class 13
naming attribute 13
priority 13
superior class 13

native discovery 83–84, 87–88
Net cost 82
Net cost for WAS 6.0 82
Network Administrators 426
Network device 175
network router 18
NEWLOGPATH 357

O
OMNIbus Server 428
oopback interface 386
open ports 182
Operating system (OS) 82, 370
Operating system information

Access 373
Oracle Application Server 388
Oracle database 388
Oracle sid 372
organization culture 5
OS Name 374–375
OS Path 374–375
OS Type 374–375
OS Version 374–375
OutOfMemory condition 362
OutOfMemory error 362

P
parallel database inserts 390
performance degradation 349
performing environmental analysis 417
PingSensor 79
plan the solution 419

design the solution 419
gathering requirements 419
perform gap analysis 420

planning
creating a deployment plan 64
database sizing considerations 63
deployment checklist 74
deployment planning case study 80
hardware and software 65

hardware requirements 72
planning worksheets 76
server sizing 62
TADDM installation 62

planning worksheets 76
Platform release 65
PoolSize 350
Ports

Active 376
Listening 377

PortScan seed 204
PortSensor 79
Post-processing 84
Primary ip address 380
prioritization 250
Process Flow Manager service 202
project sponsor 421
proxy.log 368
ps command 387

R
reconciliation 12
Red Hat 4.0 82
Red Hat Enterprise Linux 5.0 67
Red Hat ES 3.0 82
Redbooks Web site 432

Contact us xxvi
Related setting 350
Remote Desktop 395
reporting scenarios 293
runid 209
Runstat 358

S
scope 375
scope name 350
Scoped Property 350
Scriptomatic 395
searching logs 387
secured environments 24
sensors 208

logging 208
setting up discoveries 209
understanding 208

server equivalent (SE) 81
Session

Hanging 370
session pool wait time 349

436 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

setting the discovery scope 211
shallow mode 64
Sizing 62
Skill adjustment 415
SLD (System Landscape Directory) 24
SMNP MIB 380
SNMP (Simple Network Management Protocol) 22
SNMP community strings 22, 182
Solaris 10 SPARC 68
Solaris 9 SPARC 68
span CMDB domains 57
SQL 22
SQL server database 388
SQL style search queries 390
SSH (Secure Shell) 22
SSH access 175, 183, 372
SSH client 183, 192
SSH port 175, 183, 210
SSH traffic 175
SSH version 371, 373, 377, 381–382
ssh-host-config program 189
sslpassphrase 163
StackScan sensor 75, 219
Stackscan sensor 75
Start Product Console 142
State Manager 84
Statement of Work 413, 423, 426
storage threads 390
strategic proposal 412
su command 75
SUSE Linux Enterprise Server 69
switch 18
Sybase db 372
SYNC_ALL_ATTRS 64

T
tablespace 358
tactical proposal 412
TADDM sample Statement of Work 423
TADDM server 62, 71–75, 87, 174, 350, 358

Communicate 71
Data aggregation 85
Domain 72

TADDM services 140
Testhang 370
Testjdbc 372
Testos 373
Testping 375

Testportmap 376
Testportscan 377
Testprimaryip 380
Testsnmp 380
Testssh 372
Testwmi 381
threadcount 390
tioadmin 372
tiodb database 372
tioserver 372
Tivoli Application Dependency Discovery Manager
(TADDM) 89, 175, 193–194, 209, 212, 370, 376

agent free discovery engine 39
analytics 27
anchor servers 52
API 39
APIs 44
architectural details 40
architecture 35
automatic discovery 12
capabilities 17

application mapping 17
data integration and federation 19
native discovery 17
reconciliation 19
synchronization 20

cdm.log 368
central viewing console 27
Change History Report 28
change tracking 26
component comparison 29
database 39
discover.log 368
discover-admin.log 368
Discovery Library Adapter 39
Discovery Library Adapter (DLA) 39
discovery process 22
discovery requirements 22
Domain Manager UI 50
eCMDB 54
entities discovered 20
error.log 368
events-core.log 368
features 25
IBM Common Data Model (CDM) 40
installation logs 369
Inventory Report 28
l2.log 368
local-anchor*.log 368

 Index 437

log files 368
control.log 368

login.log 368
our lab environment 90
overview 16
performance considerations 343
problem determination tools 369
problems addressed 16
proxy.log 368
reconciliation 12
secure interface 27
server 46
services/ApiServer.log 368
services/ChangeManager.log 368
services/ClientProxy.log 368
services/DiscoverManager.log 368
services/DiscoverObserver.log 369
services/MonitorStateManager.log 368
services/ProcessFlowManager.log 369
services/ReportsServer.log 368
services/TopologyManager.log 368
services/ViewManager.log 369
sizing 62
Statement of Work 423

assumptions 426
business partner responsibilities 426
completion criteria 428
customer responsibilities 427
deliverables 428
executive summary 424
solution description 425
staffing estimates 427
testing 427

tomcat.log 368
Topology Builder 39
topology creation 12
Topology Manager 39
topology.log 368
traffic 421
troubleshooting 367
user interface 47
uses 31
versioning 30
Windows gateways 52

Tivoli Application Dependency Discovery Manager
(TADDM) implementation

available resources 407
client engagement 405
engagement preparation 406

services engagement overview 410
skills required 406
solution scope and components 407

advanced solution definition 410
analyze solution tasks 413
basic solution 409
creating a contract 415
demonstration system set up 412
estimating timings 417
executive assessment 411
plan the solution 419

Tivoli Enterprise Console (TEC) 428
Tivoli Open Process Automation Library (OPAL)
364
tomcat.log 368
Topology Builder 84, 202
Topology Manager 202
Topology reconciliation 62
topology.log 368
topopumpcount setting 349
Tracking server 175, 182–183, 194
Troubleshooting

analyzing TADDM log files 384
Log Trace Analyzer 382
sensors 387
specific scenarios 386

U
unicastdiscoveryport 163
Universally Unique Identifier (UUID) 12
unknown servers 364

V
View Manager 84
viewmanager 351
viewmanager directory 351
VMWARE 412
VMware 412
VMware ESX 389

W
wbemtest tool 395
WebLogic 28, 81
Weblogic Application Server 389
WebSphere 81
WebSphere Application Server 63, 389
Windows gateway 74, 182–183, 371, 373, 376, 380

438 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

Discovery software 183
Windows Gateway server 398
Windows hosts 183
Windows security 391
Windows-based system 182
WMI (Windows Management Interface) 22
WMI connectivity 381
WMI Tester 392
Wmiexec 381
wmitest tool 392

X
Xml file 361

Z
Zen 412

 Index 439

440 IBM Tivoli Application Dependency Discovery Manager V7.1 Deployment Guide

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 Tivoli Application Dependency Discovery

M
anager V7.1 Deploym

ent Guide

®

SG24-7616-00 ISBN 0738431362

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Deployment Guide Series: IBM
Tivoli Application Dependency
Discovery Manager V7.1

Learn about TADDM
functions and
architecture

Get tips for installing
and using TADDM

Customize and tune
TADDM

In this IBM® Redbooks® publication, we describe the
capabilities and ways to use IBM Tivoli® Application
Dependency Discovery Manager (TADDM). It is becoming
critical for enterprises to track the IT resources in their
environments and, more importantly, the dependencies of
their business applications on various components. TADDM
provides rich capabilities that discover the components of a
complex infrastructure and their interdependencies.

In this book, we provide insight into the TADDM V7.1
capabilities and architecture. We include recommended
procedures for installing and configuring TADDM, tips and
techniques for populating the TADDM Database and
customizing its use, and performance considerations.

Finally, we describe the sales engagement planning for
TADDM V7.1, including a sample statement of work. The
primary audience for this section is IBM Business Partners
and pre-sales Systems Engineers working in this area.

This book is a major reference for IT Specialists and IT
Architects working in TADDM V7.1 projects.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Tivoli Application Dependency Discovery Manager Introduction and Architectural Overview
	Chapter 1. IBM Service Management overview
	1.1 Information Technology Infrastructure Library
	1.1.1 ITIL Version 3
	1.1.2 Critical success factors to implement ITIL

	1.2 IBM and ITIL
	1.3 IBM Service Management
	1.3.1 Why businesses need ISM
	1.3.2 IBM Service Management overview
	1.3.3 IBM Service Management architecture

	1.4 TADDM and IBM Service Management
	1.4.1 Common data model
	1.4.2 Automatic discovery of components and relationships
	1.4.3 Automatic topology creation
	1.4.4 Reconciliation

	1.5 Summary

	Chapter 2. Introduction to Tivoli Application Dependency Discovery Manager
	2.1 TADDM overview
	2.1.1 IT problems addressed by TADDM
	2.1.2 TADDM capabilities
	2.1.3 Entities discovered by TADDM

	2.2 The TADDM discovery process
	2.2.1 Discovery requirements
	2.2.2 The discovery process
	2.2.3 Discovery sensors
	2.2.4 TADDM and secured environments

	2.3 TADDM features
	2.3.1 Auto-discovery
	2.3.2 Open API and SDK
	2.3.3 Deep configuration detail
	2.3.4 Discovery profiles
	2.3.5 Credential-less discovery
	2.3.6 Change tracking
	2.3.7 Secure interface
	2.3.8 Central viewing console for multifunctional teams
	2.3.9 Analytics
	2.3.10 Versioning
	2.3.11 Summary of TADDM features

	2.4 Uses of TADDM
	2.4.1 Configuration management foundation
	2.4.2 Impact analysis visibility
	2.4.3 Change management support

	Chapter 3. Tivoli Application Dependency Discovery Manager architectural design
	3.1 Introduction
	3.2 TADDM architecture overview
	3.2.1 TADDM architectural details
	3.2.2 Discovery extensibility
	3.2.3 TADDM APIs
	3.2.4 Discovery Library technology

	3.3 TADDM terminology
	3.3.1 TADDM Server (Domain Manager)
	3.3.2 TADDM user interface
	3.3.3 TADDM Database
	3.3.4 Anchor servers and Windows gateways

	3.4 eCMDB
	3.4.1 eCMDB overview
	3.4.2 eCMDB synchronization
	3.4.3 eCMDB database
	3.4.4 eCMDB security

	Part 2 Tivoli Application Dependency Discovery Manager Planning and Installation
	Chapter 4. Deployment and capacity planning
	4.1 Sizing your TADDM environment
	4.1.1 TADDM Server sizing
	4.1.2 Topology reconciliation is not a linear process
	4.1.3 Database sizing considerations

	4.2 Creating a deployment plan
	4.3 Planning your hardware and software
	4.3.1 Using Red Hat Enterprise Linux for your TADDM Server
	4.3.2 Hardware requirements

	4.4 TADDM deployment checklist
	4.5 Planning worksheets
	4.6 Deployment planning case study
	4.6.1 Client scenario
	4.6.2 Solution approach
	4.6.3 Client solution
	4.6.4 Additional sizing examples

	Chapter 5. Tivoli Application Dependency Discovery Manager installation steps
	5.1 Our lab environment
	5.2 Installing DB2
	5.2.1 Install DB2 Enterprise Server
	5.2.2 Create DB2 database users
	5.2.3 Create the DB2 instances
	5.2.4 Run the make_db2_db.sh script

	5.3 Installing a TADDM Domain Server on Windows
	5.3.1 Install TADDM 7.1
	5.3.2 Install interim fix 0007

	5.4 Installing a TADDM Domain Server on Linux
	5.4.1 Install TADDM 7.1
	5.4.2 Install interim fix 0007

	5.5 Installing a TADDM enterprise server on AIX
	5.5.1 Install TADDM 7.1
	5.5.2 Install interim fix 0007
	5.5.3 Configuring the eCMDB

	5.6 Configuring LDAP
	5.7 Deploying anchors and gateways
	5.7.1 Enabling discoveries across the firewall
	5.7.2 Defining an anchor host
	5.7.3 Open ports

	5.8 Setting up Windows gateways
	5.8.1 Installing Cygwin SSH
	5.8.2 Adding or changing a Windows gateway

	5.9 Troubleshooting
	5.9.1 Server not started automatically
	5.9.2 Installation log files

	Part 3 Discovery and Reporting Case Studies
	Chapter 6. Discovery scenarios
	6.1 Discovery sensors
	6.1.1 Discovery overview
	6.1.2 Discovery components
	6.1.3 Discovery process in detail
	6.1.4 Dependency discovery
	6.1.5 Understanding sensors
	6.1.6 Setting up discoveries
	6.1.7 Discovery profiles
	6.1.8 Level 2 profile

	6.2 Customizing and managing discoveries
	6.2.1 Custom servers
	6.2.2 Custom server extensions
	6.2.3 Computer system templates
	6.2.4 The bulkload program

	6.3 Reconciliation and prioritization
	6.3.1 Manually merging discovered configuration items
	6.3.2 Adding prioritization rules to your configuration items

	6.4 Discovery Library Adapters
	6.4.1 Discovery Library Adapter concepts
	6.4.2 File naming conventions
	6.4.3 Integration overview
	6.4.4 Creating a Discovery Library Adapter
	6.4.5 When to use a Discovery Library Adapter

	6.5 Understanding the DLA APIs
	6.5.1 Using the DLA adapter API
	6.5.2 Managing configuration parameters and discoveries
	6.5.3 Managing property change listeners
	6.5.4 Managing Discovery Library Adapter states
	6.5.5 Using the DLA Book Production API
	6.5.6 Book properties and methods
	6.5.7 Managed element properties and methods
	6.5.8 Attribute properties and methods
	6.5.9 Relationship properties and methods

	6.6 Example of Discovery Library Adapter

	Chapter 7. Reporting scenarios
	7.1 Introducing BIRT
	7.2 Deploying BIRT Report Viewer on TADDM
	7.3 Designing TADDM Reports with BIRT
	7.3.1 Designing reports with scripted data source
	7.3.2 Designing reports with TADDM Database Views

	7.4 Disaster recovery and validation
	7.4.1 Versions

	7.5 Root cause analysis with tracking changes

	Part 4 Performance and Troubleshooting Considerations
	Chapter 8. Performance considerations
	8.1 Performance improvements in TADDM V7.1
	8.2 Discovery tuning
	8.3 Tuning storage performance
	8.4 Caching user interface views
	8.4.1 Understanding caching
	8.4.2 Configuring caching
	8.4.3 Maintaining the cache

	8.5 Database considerations
	8.5.1 Database indexes
	8.5.2 Database settings: DB2
	8.5.3 Initial database statistics on DB2
	8.5.4 Running statistics
	8.5.5 Bufferpool

	8.6 Java Virtual Machine settings
	8.6.1 Modifying the JVM arguments
	8.6.2 Java Max memory
	8.6.3 Java garbage collection

	8.7 Log settings for production
	8.8 Maintenance
	8.8.1 Clearing out unknown servers
	8.8.2 Finding and applying fixes and updates

	Chapter 9. Troubleshooting
	9.1 Log files
	9.2 Installation logs
	9.3 Problem determination tools
	9.3.1 testhang.jy
	9.3.2 testjdbc.jy
	9.3.3 testssh.py
	9.3.4 testos.jy
	9.3.5 testping.jy
	9.3.6 testportmap.jy
	9.3.7 testportscan.jy
	9.3.8 testprimaryip.jy
	9.3.9 testsnmp.jy
	9.3.10 testwmi.jy
	9.3.11 wmiexec.jy

	9.4 Log and Trace Analyzer
	9.5 Specific scenarios
	9.5.1 Common problems
	9.5.2 Troubleshooting problems with sensors
	9.5.3 Storage errors in sensors
	9.5.4 Application programming interfaces (APIs)
	9.5.5 Troubleshooting Windows discoveries
	9.5.6 Troubleshooting SSH

	Part 5 Planning for a Client Engagement
	Appendix A. Planning for a client engagement
	Services engagement preparation
	Implementation skills
	Available resources

	Solution scope and components
	Basic solution definition
	Advanced solution definition

	Services engagement overview
	Executive Assessment
	Demonstration system setup
	Analyze solution tasks
	Creating a contract

	Estimating the activities and timings of the engagement
	Perform environmental analysis and plan tasks
	Plan the solution
	Implement the solution
	Close the engagement

	Appendix B. Sample Statement of Work for Tivoli Application Dependency Discovery Manager
	Building an auto-discovery and device dependency solution
	Executive summary
	Solution description
	Assumptions
	Business partner responsibilities
	Client responsibilities
	Staffing estimates
	Testing
	Deliverables
	Completion criteria

	Abbreviations and acronyms
	Related publications
	IBM Redbooks publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

